scispace - formally typeset
Search or ask a question
Topic

Methyl vinyl ketone

About: Methyl vinyl ketone is a research topic. Over the lifetime, 1510 publications have been published within this topic receiving 26839 citations. The topic is also known as: 3-buten-2-one & gamma-oxo-alpha-butylene.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a cycloaddition reaction of ethyl 2-(benzenesulfonylmethyl)-2-propenyl carbonate with methyl acrylate and methyl vinyl ketone in the presence of a chiral ferrocenylphosphine-palladium catalyst gave optically active methylenecyclopentane derivatives of up to 78% ee.

59 citations

Journal ArticleDOI
TL;DR: The Michael reaction between methyl 1-oxoindan-2-carboxylate and methyl vinyl ketone was achieved successfully by pumping solutions of the reactants in toluene through a fluid bed of Amberlyst A21 at 50 degrees C.
Abstract: The Michael reaction between methyl 1-oxoindan-2-carboxylate and methyl vinyl ketone was achieved successfully by pumping solutions of the reactants in toluene through a fluid bed of Amberlyst A21 at 50 °C. The use of a fluid bed reactor is attractive as it allows gel-type beads, i.e. the type of bead used in most studies of polymer-supported (PS) organic reactions, to be used satisfactorily in a flow system. When polymer-supported cinchonidine was used in place of Amberlyst A21, the Michael product was obtained in high yield with an enantiomeric excess (ee) of 51%. This % ee is comparable to that achieved when the reaction was catalysed by cinchonidine itself.

59 citations

Journal ArticleDOI
TL;DR: Reduction of ethyl 2-aikyl-3-oxobutanontes with bakers' yeast treated with methyl vinyl ketone gave the corresponding (2R,3S)-syn-2-alkyl- 3-hydroxybutanoates in excellent anantio- and diastercoselectivities.

58 citations

Journal ArticleDOI
Jianming Xu1, Fu Zhang1, Bo-Kai Liu1, Qi Wu1, Xianfu Lin1 
TL;DR: A zinc-dependent acylase, D-aminoacylase from Escherichia, displays a promiscuous activity to catalyze the carbon-carbon bond formation reaction of 1,3-dicarbonyl compounds to methyl vinyl ketone in organic media.

57 citations

Journal ArticleDOI
D. Huang1, Xuan Zhang1, Zhongming Chen1, Yue Zhao1, Xiaoli Shen1 
TL;DR: In this paper, the authors analyzed the aqueous OH-initiated oxidation of isoprene and its reaction products including carbonyl compounds and organic acids, regarding the acidity and temperature as in-cloudy conditions.
Abstract: . Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous OH-initiated oxidation of isoprene and its reaction products including carbonyl compounds and organic acids, regarding the acidity and temperature as in-cloudy conditions. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrolein (MACR), methyl vinyl ketone (MVK), methyl glyoxal (MG), and glyoxal (GL). We used a novel chemical titration method to monitor the concentration of isoprene in the aqueous phase. We used a box model to interpret the mechanistic differences between aqueous and gas phase OH radical-initiated isoprene oxidations. Our results were the first demonstration of the rate constant for the reaction between isoprene and OH radical in water, 1.2 ± 0.4) × 1010 M−1 s−1 at 283 K. Molar yields were determined based on consumed isoprene. Of note, the ratio of the yields of MVK (24.1 ± 0.8 %) to MACR (10.9 ± 1.1%) in the aqueous phase isoprene oxidation was approximately double that observed for the corresponding gas phase reaction. We hypothesized that this might be explained by a water-induced enhancement in the self-reaction of a hydroxy isoprene peroxyl radical (HOCH2C(CH3)(O2)CH = CH2) produced in the aqueous reaction. The observed yields for MG and GL were 11.4 ± 0.3 % and 3.8 ± 0.1 %, respectively. Model simulations indicated that several potential pathways may contribute to the formation of MG and GL. Finally, oxalic acid increased steadily throughout the course of the study, even after isoprene was consumed completely. The observed yield of oxalic acid was 26.2 ± 0.8 % at 6 h. The observed carbon balance accounted for ~50 % of the consumed isoprene. The presence of high-molecular-weight compounds may have accounted for a large portion of the missing carbons, but they were not quantified in this study. In summary, our work has provided experimental evidence that the availably abundant water could affect the distribution of oxygenated organic compounds produced in the oxidation of volatile organic compounds.

57 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
89% related
Reactivity (chemistry)
43.8K papers, 833.5K citations
89% related
Palladium
64.7K papers, 1.3M citations
87% related
Aryl
95.6K papers, 1.3M citations
87% related
Reaction rate constant
42.9K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202249
202121
202020
201910
201817