scispace - formally typeset
Search or ask a question
Topic

Methylglyoxal

About: Methylglyoxal is a research topic. Over the lifetime, 2844 publications have been published within this topic receiving 102037 citations. The topic is also known as: acetylformaldehyde & pyruvaldehyde.


Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates that mangiferin can markedly ameliorate diabetes-associated cognitive decline in rats, which is done likely through suppressing methylglyoxal hyperactivity (promoting protein glycation, oxidative stress, and inflammation) mediated noxious effects.
Abstract: Evidences indicate that methylglyoxal, a highly reactive metabolite of hyperglycemia, can enhance protein glycation, oxidative stress, or inflammation. Mangiferin, a polyphenol compound of C-glucoside, has many beneficial biological activities, including anti-inflammation, anti-oxidation, neuroprotection, cognitive enhancement, etc. Whether mangiferin alleviates diabetes-associated cognitive impairment is still unclear. The present study was designed to investigate the effects of mangiferin on the behavioral deficits of diabetic rats induced by streptozotocin; the mechanisms associated with methylglyoxal toxicity are especially investigated. Diabetic rats were treated with mangiferin (15, 30, and 60 mg/kg, p.o.) for 9 weeks. Cognitive performances were evaluated with the Morris water maze. Hippocampus and blood were obtained for evaluation of the effects of mangiferin on protein glycation, oxidative stress, and inflammation in diabetic state. Mangiferin significantly improved the behavioral performances of diabetic rats, evidenced by a decrease in escape latency as well as increases in numbers of crossing the platform and percentage of time spent in the target quadrant, which were accompanied by decreases in the levels of advanced glycation end-products and their receptor (RAGE), interleukin-1β, TNF-α, and malondialdehyde and increases in the activity and expression of glyoxalase 1 as well as glutathione level in the hippocampus of diabetic rats. Furthermore, mangiferin produced a significant decrease in malondialdehyde level and increased glutathione level and superoxide dismutase activity in the serum of diabetic rats. This study demonstrates that mangiferin can markedly ameliorate diabetes-associated cognitive decline in rats, which is done likely through suppressing methylglyoxal hyperactivity (promoting protein glycation, oxidative stress, and inflammation) mediated noxious effects.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether or not there were any significant changes related to in-vitro or in -vivo glycation in the structural properties and the binding of human albumin to both therapeutic drugs.

64 citations

Journal ArticleDOI
TL;DR: Preincubation of L1210 cells with 2(Et)2 increases the sensitivity of these cells to the inhibitory effects of exogenous methylglyoxal and is much less toxic to nonproliferating murine splenic lymphocytes, possibly reflecting reduced sensitivity to methylgly oxal and/or reduced chemical stability of the diacid inside these cells.
Abstract: S-(N-Aryl-N-hydroxycarbamoyl)glutathione derivatives (GSC(O)N(OH)C6H4X, where GS = glutathionyl and X = H (1), Cl (2), Br (3)) have been proposed as possible anticancer agents, because of their ability to strongly inhibit the methylglyoxal-detoxifying enzyme glyoxalase I. In order to test this hypothesis, the in vitro antitumor activities of these compounds and their [glycyl,glutamyl] diethyl ester prodrug forms (1(Et)2-3(Et)2) have been examined. All three diethyl esters inhibit the growth of L1210 murine leukemia and B16 melanotic melanoma in culture, with GI50 values in the micromolar concentration range. Cell permeability studies with L1210 cells indicate that growth inhibition is associated with rapid diffusion of the diethyl esters into the cells, followed by enzymatic hydrolysis of the ethyl ester functions to give the inhibitory diacids. In contrast, the corresponding diacids neither readily diffuse into nor significantly inhibit the growth of these cells. Consistent with the hypothesis that cell growth inhibition is due to competitive inhibition of glyoxalase I, preincubation of L1210 cells with 2(Et)2 increases the sensitivity of these cells to the inhibitory effects of exogenous methylglyoxal. Compound 2(Et)2 is much less toxic to nonproliferating murine splenic lymphocytes, possibly reflecting reduced sensitivity to methylglyoxal and/or reduced chemical stability of the diacid inside these cells. Finally, a plasma esterase-deficient murine model has been identified that should allow in vivo testing of the diethyl esters.

64 citations

Journal ArticleDOI
TL;DR: Upregulation of mitogenesis and mitochondrial activity by increased aerobic exercise, or dietary manipulation, helps to maintain NAD+availability and thereby decreases MG-induced proteotoxicity, and can explain the apparent paradox whereby aging is seemingly caused by increased ROS-mediated macromolecular damage but is ameliorated by increase aerobic activity.
Abstract: It is suggested that NAD+ availability strongly affects cellular aging and organism lifespan: low NAD+ availability increases intracellular levels of glycolytic triose phosphates (glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate) which, if not further metabolized, decompose spontaneously into methylglyoxal (MG), a glycating agent and source of protein and mitochondrial dysfunction and reactive oxygen species (ROS). MG-damaged proteins and other aberrant polypeptides can induce ROS generation, promote mitochondrial dysfunction and inhibit proteasomal activity. Upregulation of mitogenesis and mitochondrial activity by increased aerobic exercise, or dietary manipulation, helps to maintain NAD+ availability and thereby decreases MG-induced proteotoxicity. These proposals can explain the apparent paradox whereby aging is seemingly caused by increased ROS-mediated macromolecular damage but is ameliorated by increased aerobic activity. It is also suggested that increasing mitochondrial activity decreases ROS generation, while excess numbers of inactive mitochondria are deleterious due to increased ROS generation. The muscle- and brain-associated dipeptide, carnosine, is an intracellular buffer which can delay senescence in cultured human fibroblasts and delay aging in senescence-accelerated mice. Carnosine’s ability to react with MG and possibly other deleterious carbonyl compounds, and scavenge various ROS, may account for its protective ability towards ischemia and ageing.

64 citations

Journal ArticleDOI
TL;DR: The findings newly pose the antiglycation enzymatic defense Glo1 and MG‐H1 among the molecular events involved in nicotine‐induced reactive oxygen species‐mediated osteoblasts apoptosis, a crucial event in smoker‐related osteoporosis, and suggest novel exposure markers in health surveillance programmes related to smokers‐associated osteoporeosis.

64 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Programmed cell death
60.5K papers, 3.8M citations
79% related
Apoptosis
115.4K papers, 4.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023112
2022306
2021173
2020156
2019153
2018128