scispace - formally typeset
Search or ask a question
Topic

Methylglyoxal

About: Methylglyoxal is a research topic. Over the lifetime, 2844 publications have been published within this topic receiving 102037 citations. The topic is also known as: acetylformaldehyde & pyruvaldehyde.


Papers
More filters
Journal ArticleDOI
TL;DR: Data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG, and may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.
Abstract: Objectives The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. Methods CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1−/−) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. Results Glo1−/− mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1−/− mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. Conclusions These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.

42 citations

Journal ArticleDOI
TL;DR: It is demonstrated that quercetin and cyanidin‐3‐glucoside can guard against photooxidative processes in retina and reduce the expression of mRNA encoding receptor for advanced glycation end products.

42 citations

Journal ArticleDOI
TL;DR: Evidence is presented that acidification of the cytoplasm protects E. coli DNA against methylglyoxal and protection by KefB and KefC occurred independently of UvrA, and results suggest this event is not essential for methyl glyoxal‐induced death.
Abstract: The effect of the toxic metabolite methylglyoxal on the DNA of Escherichia coli cells has been investigated. Exposure of E. coli cells to methylglyoxal reduces the transformability of plasmid DNA and results in the degradation of genomic DNA. The activity of the KefB and KefC potassium channels protects E. coli cells against methylglyoxal and limits the amount of DNA damage. In mutants lacking KefB and KefC, methylglyoxal-induced DNA damage was reduced by incubation with a weak acid that lowers the pHi to the same extent as through KefB and KefC activation. This provides evidence that acidification of the cytoplasm protects E. coli DNA against methylglyoxal. By the analysis of cells lacking UvrA, we demonstrate that this repair protein is required for the degradation of the DNA upon methylglyoxal exposure. However, protection by KefB and KefC occurred independently of UvrA. Although we present evidence that exposure of E. coli cells to methylglyoxal results in DNA degradation, our results suggest this event is not essential for methylglyoxal-induced death. The implications of these findings will be discussed.

42 citations

Journal ArticleDOI
Peter H. Yu1, Wang M1, Deng Yl1, Fan H1, Shira-Bock L1 
TL;DR: Increased semicarbazide-sensitive amine oxidase–mediated deamination could be involved in the cascade of atherogenesis related to diabetic complications.
Abstract: Aims/hypothesis. Semicarbazide-sensitive amine oxidase has been recognised to be a potential risk factor in vascular disorders associated with diabetic complications and to be related to mortality in patients suffering from heart disease. This enzyme, associated with the vascular system, catalyses the deamination of methylamine and aminoacetone, and also acts as an adhesion molecule related to leucocyte trafficking and inflammation. The deaminated products include the toxic aldehydes, formaldehyde and methylglyoxal, respectively, hydrogen peroxide and ammonia.

42 citations

Journal ArticleDOI
TL;DR: Evidence is presented that lactoylglutathione, a by-product of methylglyoxal produced from increased glycolysis, is elevated in lung cancer in mouse models and humans, arguing reactive metabolite production can be a liability for cancers.
Abstract: Increased glucose uptake and metabolism is a prominent phenotype of most cancers, but efforts to clinically target this metabolic alteration have been challenging. Here, we present evidence that lactoylglutathione (LGSH), a byproduct of methylglyoxal detoxification, is elevated in both human and murine non-small cell lung cancers (NSCLC). Methylglyoxal is a reactive metabolite byproduct of glycolysis that reacts non-enzymatically with nucleophiles in cells, including basic amino acids, and reduces cellular fitness. Detoxification of methylglyoxal requires reduced glutathione (GSH), which accumulates to high levels in NSCLC relative to normal lung. Ablation of the methylglyoxal detoxification enzyme glyoxalase I (Glo1) potentiates methylglyoxal sensitivity and reduces tumor growth in mice, arguing that targeting pathways involved in detoxification of reactive metabolites is an approach to exploit the consequences of increased glucose metabolism in cancer.

42 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Programmed cell death
60.5K papers, 3.8M citations
79% related
Apoptosis
115.4K papers, 4.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023112
2022306
2021173
2020156
2019153
2018128