scispace - formally typeset
Search or ask a question
Topic

Methylglyoxal

About: Methylglyoxal is a research topic. Over the lifetime, 2844 publications have been published within this topic receiving 102037 citations. The topic is also known as: acetylformaldehyde & pyruvaldehyde.


Papers
More filters
Journal ArticleDOI
TL;DR: All of the S-adenosylmethionine decarboxylases were strongly competitively inhibited by methylglyoxal bis(guanylhydrazone) and even more powerfully by its ethyl analogue, although the putrescine-activated enzymes from prostate and yeast were more sensitive than the bacterial and slime-mould enzymes.
Abstract: S-Adenosyl-L-methionine decarboxylases were purified from rat ventral prostate, yeast (Saccharomyces cerevisiae), slime mould (Physarum polycephalum) and bacteria (Escherichia coli) and tested for inhibition by a variety of nucleosides related to S-adenosylmethionine and by methyl- and ethyl-glyoxal bis(guanylhydrazone). Although the enzymes from these different sources are markedly different with respect to activation by cations, the inhibition by nucleosides was quite similar. Very little inhibition was seen when analogues of S-adenosylmethionine with a different base were tested or when the ribose ring was opened or the positive charge on the sulphur atom was not present. Some derivatives in which the amino acid portion of the molecule was altered were more potent inhibitors, but again there was little difference between the enzymes from different sources. 5'-(Dimethylsulphonio)-5'-deoxyadenosine and S-adenosyl-3-methylthiopropylamine were the most inhibitory substances and had similar Ki values, suggesting that the aminopropyl group does not contribute significantly to the binding. All of the S-adenosylmethionine decarboxylases were strongly competitively inhibited by methylglyoxal bis(guanylhydrazone) and even more powerfully by its ethyl analogue, although the putrescine-activated enzymes from prostate and yeast were more sensitive than the bacterial and slime-mould enzymes. All of the S-adenosylmethionine decarboxylases tested bound to a column of methylglyoxal bis(guanylhydrazone) linked to Sepharose and were not eluted by 0.5 M-NaCl, but could be released by 1 mM concentrations of the drug, providing a rapid and efficient method for their purification.

40 citations

Journal ArticleDOI
TL;DR: D density functional theory method is used to investigate the reaction mechanism of Glyoxalase II and it is found that the bridging hydroxide is capable of performing nucleophilic attack at the substrate carbonyl to form a tetrahedral intermediate.

40 citations

Journal ArticleDOI
TL;DR: The GLO1 transgene lessened streptozotocin (STZ)-induced increases in immunoreactive hydroimidazolone (MG-H1) in Apoe−/− mice as discussed by the authors.
Abstract: The reactive dicarbonyls, glyoxal and methylglyoxal (MG), increase in diabetes and may participate in the development of diabetic complications. Glyoxal and MG are detoxified by the sequential activities of glyoxalase 1 (GLO1) and glyoxalase 2. To determine the contribution of these dicarbonyls to the etiology of complications, we have genetically manipulated GLO1 levels in apolipoprotein E-null (Apoe−/−) mice. Male Apoe−/− mice, hemizygous for a human GLO1 transgene (GLO1TGApoe−/− mice) or male nontransgenic Apoe−/− litter mates were injected with streptozotocin or vehicle and 6 or 20 weeks later, aortic atherosclerosis was quantified. The GLO1 transgene lessened streptozotocin (STZ)-induced increases in immunoreactive hydroimidazolone (MG-H1). Compared to nondiabetic mice, STZ-treated GLO1TGApoe−/− and Apoe−/− mice had increased serum cholesterol and triglycerides and increased atherosclerosis at both times after diabetes induction. While the increased GLO1 activity in the GLO1TGApoe−/− mice failed to protect against diabetic atherosclerosis, it lessened glomerular mesangial expansion, prevented albuminuria and lowered renal levels of dicarbonyls and protein glycation adducts. Aortic atherosclerosis was also quantified in 22-week-old, male normoglycemic Glo1 knockdown mice on an Apoe−/− background (Glo1KDApoe−/− mice), an age at which Glo1KD mice exhibit albuminuria and renal pathology similar to that of diabetic mice. In spite of ~75% decrease in GLO1 activity and increased aortic MG-H1, the Glo1KDApoe−/− mice did not show increased atherosclerosis compared to age-matched Apoe−/− mice. Thus, manipulation of GLO1 activity does not affect the development of early aortic atherosclerosis in Apoe−/− mice but can dictate the onset of kidney disease independently of blood glucose levels.

40 citations

Journal ArticleDOI
TL;DR: These ideas are presented as a novel slant on the role of the glycation process in atherosclerosis, which may be a double edged sword: Poor control of infections may contribute to persistent inflammation, whilst inhibition of immune activation by dendritic cells may inhibit plaque progression.
Abstract: Atherosclerosis is a major global cause of morbidity and mortality, and diabetes patients are at increased risk of coronary heart disease development. Advanced glycation of proteins occurs in the body due to raised concentrations of reducing sugars and reactive oxygen species, and is a causal factor behind complications of diabetes. Glycated proteins, through alteration of protein structure and function, and from ligation with their receptors, lead to widespread vascular damage. The alpha-oxoaldehyde, methylglyoxal (MG) is the most reactive glycation precursor, and is increased in the blood of diabetes patients. There is debate about the triggering events leading to atherosclerosis, but the inflammatory action of glycated proteins, including those with MG adducts, through their receptor, RAGE, is a major candidate for initiating plaque formation. In addition glycation may cause cross-links on proteins of the extracellular matrix, stiffening arteries and 'trapping' other macromolecules. MG is also likely to form adducts on many other proteins, enzymes, lipids, DNA or RNA, changing their structure, and may disrupt enzyme activity, hormone regulation and immune function. In the latter context, MG disrupts function of the potent antigen presenting cells, dendritic cells. This effect may be a double edged sword: Poor control of infections may contribute to persistent inflammation, whilst inhibition of immune activation by dendritic cells may inhibit plaque progression. This review aims to present these ideas as a novel slant on the role of the glycation process in atherosclerosis.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors sought the mechanisms on how the soybean GmNAC085 functions in the regulation of GSH biosynthesis and GSH-dependent detoxifications of reactive oxygen species (ROS) and methyl glyoxal (MG) in order to promote drought tolerance in Arabidopsis thaliana.

40 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Programmed cell death
60.5K papers, 3.8M citations
79% related
Apoptosis
115.4K papers, 4.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023112
2022306
2021173
2020156
2019153
2018128