scispace - formally typeset
Search or ask a question
Topic

Methylglyoxal

About: Methylglyoxal is a research topic. Over the lifetime, 2844 publications have been published within this topic receiving 102037 citations. The topic is also known as: acetylformaldehyde & pyruvaldehyde.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes, and a member of OsDJ-1 family showed high constitutive expression at all developmental stages and tissues of rice.
Abstract: Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice-a shorter route for MG detoxification.

90 citations

Journal ArticleDOI
TL;DR: An enzyme fraction which specifically catalyzes the formation of methylglyoxal from dihydroxyacetone phosphate has been isolated and partially purified from goat liver and appears to be substantially free from glyoxalase I, reduced glutathione, and triosephosphate isomerase.

90 citations

Journal ArticleDOI
TL;DR: Results indicated that MGO mediates JNK- and p38-dependent EC inflammatory responses, which might be independent of oxidative stress, and MGO-induced morphological cell damage seems unlikely to be associated with COX-2-PGE(2).
Abstract: Methylglyoxal (MGO) is a reactive metabolite of glucose. Since the plasma concentration of MGO is increased in diabetic patients, MGO is implicated in diabetes-associated vascular endothelial cells...

89 citations

Journal ArticleDOI
TL;DR: GAPDH can be modified by methylglyoxal intracellular concentrations close to those previously observed in vivo, with measurable changes in isoelectric point and mass, suggesting that conditions associated with elevated intrACEllular MG could modify GAPDH activity in vivo.
Abstract: The activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can play an important role in regulating multiple upstream pathways relating to the development of diabetic complications. GAPDH can be modified by a number of metabolic factors, including oxidative and glycation products. To study the effect of glycation on GAPDH we have measured GAPDH structure and activity after exposure of the enzyme to the potent alpha dicarbonyl sugar methylglyoxal (MG). Rabbit GAPDH was incubated with 10-1000 microM MG for 96 hours, and enzyme activity was measured at intervals by a spectrophotometric assay. Isoelectric focusing of purified and cellular GAPDH was performed with a PROTEAN IEF system and the bands visualized by Western blotting. The mass of glycated and native GAPDH was determined by MALDI with a Applied Biosystems Voyager System 6235. GAPDH activity (at 96 h) was decreased by 20% with 1.0 micromolar MG and showed progressively greater suppression of activity with increasing concentrations up to 1 mM, where activity was decreased by 97%. Reduction in GAPDH activity was rapidly decreasing by 69.2% by two hours with 1 mM MG. IEF showed an isoelectric point (IEP) of 8.5 for native GAPDH, while measurable changes were seen with modification by MG levels of 1 mM (IEP 7.5) and 50 microM (IEP 8.0). With MALDI, GAPDH mass increased from 36.012 kDa to 37.071 after exposure to 50 microM MG and to 40.625 following 1 mM MG. This indicates addition of 12.75 and 55.6 MG residues, respectively, to GAPDH. GAPDH can be modified by methylglyoxal intracellular concentrations close to those previously observed in vivo, with measurable changes in isoelectric point and mass. These modifications can lead to decreased enzyme activity, suggesting that conditions associated with elevated intracellular MG could modify GAPDH activity in vivo.

89 citations

Journal ArticleDOI
TL;DR: Glyoxalase I exerts renoprotective effects in renal I/R injury via a reduction in MG accumulation in tubular cells, and is significantly ameliorated in association with a decrease in intracellular MG adduct accumulation, oxidative stress, and tubular cell apoptosis.
Abstract: Methylglyoxal (MG), a highly reactive carbonyl compound generated by carbohydrate oxidation and glycolysis, is the major precursor of protein glycation and induces cytotoxicity leading to apoptosis...

88 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Programmed cell death
60.5K papers, 3.8M citations
79% related
Apoptosis
115.4K papers, 4.8M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023112
2022306
2021173
2020156
2019153
2018128