scispace - formally typeset
Search or ask a question
Topic

Metric (mathematics)

About: Metric (mathematics) is a research topic. Over the lifetime, 42617 publications have been published within this topic receiving 836571 citations. The topic is also known as: distance function & metric.


Papers
More filters
Book
01 Jan 1968
TL;DR: Weak Convergence in Metric Spaces as discussed by the authors is one of the most common modes of convergence in metric spaces, and it can be seen as a form of weak convergence in metric space.
Abstract: Weak Convergence in Metric Spaces. The Space C. The Space D. Dependent Variables. Other Modes of Convergence. Appendix. Some Notes on the Problems. Bibliographical Notes. Bibliography. Index.

13,153 citations

Journal ArticleDOI
20 Jun 1995
TL;DR: A novel scheme for the detection of object boundaries based on active contours evolving in time according to intrinsic geometric measures of the image, allowing stable boundary detection when their gradients suffer from large variations, including gaps.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours deforming according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric as defined by the image content. This geodesic approach for object segmentation allows to connect classical "snakes" based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved as showed by a number of examples. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. >

5,566 citations

Journal ArticleDOI
TL;DR: In this article, a geodesic approach based on active contours evolving in time according to intrinsic geometric measures of the image is presented. But this approach is not suitable for 3D object segmentation.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.

4,967 citations

Posted Content
TL;DR: In this article, the authors compare the predictive accuracy of various methods in a set of representative problem domains, including correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods.
Abstract: Collaborative filtering or recommender systems use a database about user preferences to predict additional topics or products a new user might like. In this paper we describe several algorithms designed for this task, including techniques based on correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods. We compare the predictive accuracy of the various methods in a set of representative problem domains. We use two basic classes of evaluation metrics. The first characterizes accuracy over a set of individual predictions in terms of average absolute deviation. The second estimates the utility of a ranked list of suggested items. This metric uses an estimate of the probability that a user will see a recommendation in an ordered list. Experiments were run for datasets associated with 3 application areas, 4 experimental protocols, and the 2 evaluation metrics for the various algorithms. Results indicate that for a wide range of conditions, Bayesian networks with decision trees at each node and correlation methods outperform Bayesian-clustering and vector-similarity methods. Between correlation and Bayesian networks, the preferred method depends on the nature of the dataset, nature of the application (ranked versus one-by-one presentation), and the availability of votes with which to make predictions. Other considerations include the size of database, speed of predictions, and learning time.

4,883 citations

Journal ArticleDOI
TL;DR: This paper investigates the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval, and compares the retrieval performance of the EMD with that of other distances.
Abstract: We investigate the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman, and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on vector quantization. This combination leads to an image comparison framework that often accounts for perceptual similarity better than other previously proposed methods. The EMD is based on a solution to the transportation problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial matching. It is more robust than histogram matching techniques, in that it can operate on variable-length representations of the distributions that avoid quantization and other binning problems typical of histograms. When used to compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture, and we compare the retrieval performance of the EMD with that of other distances.

4,593 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Fuzzy logic
151.2K papers, 2.3M citations
83% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Support vector machine
73.6K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202253
20213,191
20203,141
20192,843
20182,731
20172,341