scispace - formally typeset
Search or ask a question
Topic

Metric (mathematics)

About: Metric (mathematics) is a research topic. Over the lifetime, 42617 publications have been published within this topic receiving 836571 citations. The topic is also known as: distance function & metric.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a decision problem is defined in terms of an outcome space, an action space and a loss function, which allows generalisation of many standard statistical concepts and properties, including generalised exponential families.
Abstract: A decision problem is defined in terms of an outcome space, an action space and a loss function. Starting from these simple ingredients, we can construct: Proper Scoring Rule; Entropy Function; Divergence Function; Riemannian Metric; and Unbiased Estimating Equation. From an abstract viewpoint, the loss function defines a duality between the outcome and action spaces, while the correspondence between a distribution and its Bayes act induces a self-duality. Together these determine a “decision geometry” for the family of distributions on outcome space. This allows generalisation of many standard statistical concepts and properties. In particular we define and study generalised exponential families. Several examples are analysed, including a general Bregman geometry.

171 citations

Book ChapterDOI
Wonsik Kim1, Bhavya Goyal1, Kunal Chawla1, Jungmin Lee1, Keun-Joo Kwon1 
08 Sep 2018
TL;DR: Zhang et al. as discussed by the authors proposed an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object, and also proposed a divergence loss, which encourages diversity among the learners.
Abstract: Deep metric learning aims to learn an embedding function, modeled as deep neural network. This embedding function usually puts semantically similar images close while dissimilar images far from each other in the learned embedding space. Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

171 citations

Journal ArticleDOI
TL;DR: This survey overviews existing distance metric learning approaches according to a common framework and categorizes eachdistance metric learning algorithm as supervised, unsupervised or semi-supervised, and compares those different types of metric learning methods, pointing out their strength and limitations.
Abstract: Distance metric learning is a fundamental problem in data mining and knowledge discovery. Many representative data mining algorithms, such as $$k$$ k -nearest neighbor classifier, hierarchical clustering and spectral clustering, heavily rely on the underlying distance metric for correctly measuring relations among input data. In recent years, many studies have demonstrated, either theoretically or empirically, that learning a good distance metric can greatly improve the performance of classification, clustering and retrieval tasks. In this survey, we overview existing distance metric learning approaches according to a common framework. Specifically, depending on the available supervision information during the distance metric learning process, we categorize each distance metric learning algorithm as supervised, unsupervised or semi-supervised. We compare those different types of metric learning methods, point out their strength and limitations. Finally, we summarize open challenges in distance metric learning and propose future directions for distance metric learning.

171 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper presents a new approach for image set classification, where each training and testing example contains a set of image instances of an object captured from varying viewpoints or under varying illuminations, and proposes exploring multiple order statistics as features of image sets.
Abstract: This paper presents a new approach for image set classification, where each training and testing example contains a set of image instances of an object captured from varying viewpoints or under varying illuminations. While a number of image set classification methods have been proposed in recent years, most of them model each image set as a single linear subspace or mixture of linear subspaces, which may lose some discriminative information for classification. To address this, we propose exploring multiple order statistics as features of image sets, and develop a localized multi-kernel metric learning (LMKML) algorithm to effectively combine different order statistics information for classification. Our method achieves the state-of-the-art performance on four widely used databases including the Honda/UCSD, CMU Mobo, and Youtube face datasets, and the ETH-80 object dataset.

171 citations

Journal ArticleDOI
TL;DR: This paper proposes a new domain adaptation method named Adversarial Tight Match (ATM) which enjoys the benefits of both adversarial training and metric learning and proposes a novel distance loss, named Maximum Density Divergence (MDD), to quantify the distribution divergence.
Abstract: Unsupervised domain adaptation addresses the problem of transferring knowledge from a well-labeled source domain to an unlabeled target domain where the two domains have distinctive data distributions. Thus, the essence of domain adaptation is to mitigate the distribution divergence between the two domains. The state-of-the-art methods practice this very idea by either conducting adversarial training or minimizing a metric which defines the distribution gaps. In this paper, we propose a new domain adaptation method named adversarial tight match (ATM) which enjoys the benefits of both adversarial training and metric learning. Specifically, at first, we propose a novel distance loss, named maximum density divergence (MDD), to quantify the distribution divergence. MDD minimizes the inter-domain divergence (“match” in ATM) and maximizes the intra-class density (“tight” in ATM). Then, to address the equilibrium challenge issue in adversarial domain adaptation, we consider leveraging the proposed MDD into adversarial domain adaptation framework. At last, we tailor the proposed MDD as a practical learning loss and report our ATM. Both empirical evaluation and theoretical analysis are reported to verify the effectiveness of the proposed method. The experimental results on four benchmarks, both classical and large-scale, show that our method is able to achieve new state-of-the-art performance on most evaluations.

171 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Fuzzy logic
151.2K papers, 2.3M citations
83% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Support vector machine
73.6K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202253
20213,191
20203,141
20192,843
20182,731
20172,341