scispace - formally typeset
Search or ask a question

Showing papers on "MG132 published in 2009"


Journal ArticleDOI
TL;DR: The results suggest that Not4p, a component of the Ccr4-Not complex, may act as an E3 ubiquitin-protein ligase for translation arrest products, and the interaction between basic amino acid residues and the negatively charged exit tunnel of the ribosome leads to translation arrest followed by Not4P-mediated ubiquitination and protein degradation by the proteasome.

232 citations


Journal ArticleDOI
TL;DR: Non-toxic proteasome inhibition upregulates antioxidative enzymes via an Nrf2-dependent transcriptional activation of AREs and confers cardioprotection.
Abstract: Aims We have shown previously that non-toxic inhibition of the ubiquitin–proteasome system upregulates antioxidative defence mechanisms and protects endothelial cells from oxidative stress. Here, we have addressed the question whether the induction of antioxidative enzymes contributes to cardioprotection by non-toxic proteasome inhibition. Methods and results Treatment with 0.5 µmol/L MG132 for 48 h proved to be non-toxic and protected neonatal rat cardiac myocytes against H2O2-mediated oxidative stress in lactate dehydrogenase assays. This correlated with reduced levels of intracellular reactive oxygen species as determined by loading myocytes with dichlorofluorescein. Immunoblots showed significant upregulation of superoxide dismutase 1 (SOD1), haem oxygenase 1, and catalase upon proteasome inhibition. Luciferase assays using a reporter driven by the SOD1 promoter revealed proteasome inhibitor-mediated induction of luciferase activity. Deletion and mutation analyses identified an antioxidant response element (ARE) in the SOD1 promoter to be not only essential but also sufficient for transcriptional upregulation by proteasome inhibition. An essential role for the antioxidative transcription factor NF-E2-related factor 2 (Nrf2)—which was stabilized by proteasome inhibition—in ARE-mediated transcriptional activation was revealed in cardiac myocytes from Nrf2 wild-type and knockout mice: proteasome inhibition upregulated antioxidative enzymes and conferred protection against H2O2-mediated oxidative stress in Nrf2 wild-type cells. In contrast, the induction of antioxidative enzymes and cytoprotection were completely abolished in cardiac myocytes from Nrf2 knockout mice. Conclusion Non-toxic proteasome inhibition upregulates antioxidative enzymes via an Nrf2-dependent transcriptional activation of AREs and confers cardioprotection.

197 citations


Journal ArticleDOI
12 Aug 2009-PLOS ONE
TL;DR: It is reported that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro, and it is found that well-known proteAsome inhibitors such as MG115, MG132 and bortezomib inhibitFoxM1 transcriptional activity and FoxM1 expression.
Abstract: Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.

179 citations


Journal ArticleDOI
TL;DR: The effects of MG132 on the growth of human cervix cancer HeLa cells in relation to the cell growth, reactive oxygen species (ROS) and glutathione levels and changes of ROS and GSH by MG132 were closely related to apoptosis in He La cells.
Abstract: MG132 (carbobenzoxy-Leu-Leu-leucinal) is a peptide aldehyde, which effectively blocks the proteolytic activity of the 26S proteasome complex. We evaluated the effects of MG132 on the growth of human cervix cancer HeLa cells in relation to the cell growth, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 5 microM MG132 for 24 h. DNA flow cytometric analysis indicated that treatment with MG132 induced S, G2-M or non-specific phase arrests of the cell cycle dose-dependently. Treatment with MG132 induced apoptosis in a dose-dependent manner, as evidenced by sub-G1 cells and annexin V staining cells. Treatment with MG132 also induced the loss of mitochondrial membrane potential in HeLa cells. The intracellular ROS levels including O2*- were significantly increased in MG132-treated cells. Furthermore, the depletion of intracellular GSH content was observed in cells treated with MG132. In conclusion, MG132 inhibited the growth of HeLa cells via inducing the cell cycle arrest as well as triggering apoptosis. The changes of ROS and GSH by MG132 were closely related to apoptosis in HeLa cells.

138 citations


Journal ArticleDOI
01 Aug 2009-Diabetes
TL;DR: It is concluded that AMPK activation normalizes vascular endothelial function by suppressing 26S proteasome-mediated GTPCH I degradation in diabetes.
Abstract: OBJECTIVE The activation of AMP-activated protein kinase (AMPK) has been reported to improve endothelial function. However, the targets of AMPK in endothelial cells remain poorly defined. The aim of this study was to test whether AMPK suppresses the degradation of GTP-cyclohydrolase (GTPCH I), a key event in vascular endothelial dysfunction in diabetes. RESEARCH DESIGN AND METHODS Both human umbilical vein endothelial cells and aortas isolated from streptozotocin-injected diabetic mice were assayed for phospho-AMPK (Thr172), GTPCH I, tetrahydrobiopterin (BH4), and endothelial functions. RESULTS Oral administration of metformin (300 mg · kg −1 · day −1 , 4 weeks) in streptozotocin-injected mice significantly blunted the diabetes-induced reduction of AMPK phosphorylation at Thr172. Metformin treatment also normalized acetylcholine-induced endothelial relaxation and increased the levels of GTPCH I and BH4. The administration of AICAR, an AMPK activator, or adenoviral overexpression of a constitutively active mutant of AMPK abolished the high-glucose–induced (30 mmol/l) reduction of GTPCH I, biopeterins, and BH4 but had no effect on GTPCH I mRNA. Furthermore, AICAR or overexpression of AMPK inhibited the high-glucose–enhanced 26S proteasome activity. Consistently, inhibition of the proteasome by MG132 abolished high-glucose–induced reduction of GTPCH I in human umbilical vein endothelial cells. Further, aortas isolated from AMPKα2 −/− mice, which exhibited elevated 26S proteasome activity, had reduced levels of GTPCH I and BH4. Finally, either administration of MG132 or supplementation of l-sepiapterin normalized the impaired endothelium-dependent relaxation in aortas isolated from AMPKα2 −/− mice. CONCLUSIONS We conclude that AMPK activation normalizes vascular endothelial function by suppressing 26S proteasome-mediated GTPCH I degradation in diabetes.

133 citations


Journal ArticleDOI
TL;DR: The results indicate that the differential responses of capsaicin and DHC for cell protection are caused by the extent of the UPR and autophagy that are both regulated by the level of JNK and ERK activation.
Abstract: Endoplasmic reticulum (ER) stress causes cell survival or death, which is dependent on the type of cell and stimulus. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) and its analog, dihydrocapsaicin (DHC), induced caspase-3-independent/-dependent signaling pathways in WI38 lung epithelial fibroblast cells. Here, we describe the molecular mechanisms induced by both chemicals. Exposure to capsaicin or DHC caused induction of p53, p21, and G(0)/G(1) arrest. DHC induced massive cellular vacuolization by dilation of the ER and mitochondria. Classic ER stress inducers elicited the unfolded protein response (UPR) and up-regulation of microtubule-associated protein 1 light chain-3 (LC3) II. DHC induced ER stress by the action of heavy chain-binding protein, IRE1, Chop, eukaryotic initiation factor 2alpha, and caspase-4 and, to a lesser level, by capsaicin treatment. DHC treatment induced autophagy that was blocked by 3-methyladenine (3MA) and accumulated by bafilomycin A1. Blocking of DHC-induced autophagy by 3MA enhanced apoptotic cell death that was completely inhibited by treatment of cells with benzyl-oxcarbonyl-Val-Ala-Asp-fluoromethyl ketone. Knockdown of Ire1 down-regulated the DHC-induced Chop and LC3II and enhanced caspase-3 activation. DHC induced rapid and high-sustained c-Jun NH(2)-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) activation, but capsaicin induced transient activation of JNK/ERK. The JNK inhibitor SP600125 down-regulated the expression of IRE1, Chop, and LC3II induced by DHC, thapsigargin, and MG132 [N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal]. Pharmacological blockade or knockdown of ERK down-regulated LC3II. Capsaicin and DHC induced Akt phosphorylation, and the phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], induced autophagy via ERK activation. Our results indicate that the differential responses of capsaicin and DHC for cell protection are caused by the extent of the UPR and autophagy that are both regulated by the level of JNK and ERK activation.

113 citations


Journal ArticleDOI
TL;DR: Observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects and is of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.
Abstract: Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.

100 citations


Journal ArticleDOI
TL;DR: It is shown that the proteasome inhibitors MG132 and epoxomicin blocked a postentry step in vaccinia virus (VACV) replication, demonstrating the role of the ubiquitin-proteasome system in VACV replication and suggesting potential antipoxviral drugs.
Abstract: The ubiquitin-proteasome system has a central role in the degradation of intracellular proteins and regulates a variety of functions. Viruses belonging to several different families utilize or modulate the system for their advantage. Here we showed that the proteasome inhibitors MG132 and epoxomicin blocked a postentry step in vaccinia virus (VACV) replication. When proteasome inhibitors were added after virus attachment, early gene expression was prolonged and the expression of intermediate and late genes was almost undetectable. By varying the time of the removal and addition of MG132, the adverse effect of the proteasome inhibitors was narrowly focused on events occurring 2 to 4 h after infection, the time of the onset of viral DNA synthesis. Further analyses confirmed that genome replication was inhibited by both MG132 and epoxomicin, which would account for the effect on intermediate and late gene expression. The virus-induced replication of a transfected plasmid was also inhibited, indicating that the block was not at the step of viral DNA uncoating. UBEI-41, an inhibitor of the ubiquitin-activating enzyme E1, also prevented late gene expression, supporting the role of the ubiquitin-proteasome system in VACV replication. Neither the overexpression of ubiquitin nor the addition of an autophagy inhibitor was able to counter the inhibitory effects of MG132. Further studies of the role of the ubiquitin-proteasome system for VACV replication may provide new insights into virus-host interactions and suggest potential antipoxviral drugs.

99 citations


Journal ArticleDOI
TL;DR: It is concluded that TEB 4 interacts with and mediates loss of D2 activity, indicating that D2 ubiquitination and degradation can be tissue specific, depending on WSB-1 and TEB4 expression levels.
Abstract: The endoplasmic reticulum resident thyroid hormone-activating type 2 deiodinase (D2) is inactivated by ubiquitination via the hedgehog-inducible WSB-1. Ubiquitinated D2 can then be subsequently taken up by the proteasomal system or be reactivated by USP-33/20-mediated deubiquitination. Given that heterologously expressed D2 accumulates in Saccharomyces cerevisiae lacking the E3 ligase Doa10, we tested whether the human Doa10 ortholog, TEB4, plays a role in D2 ubiquitination and degradation. In a setting of transient coexpression in HEK-293 cells, TEB4 and D2 could be coimmunoprecipitated, and additional TEB4 expression decreased D2 activity by ∼50% (P 90% reduction in mRNA and protein levels) decreased D2 ubiquitination and increased D2 activity and protein levels by about fourfold. The other activating deiodinase, D1, or a truncated D2 molecule (Δ18-D2) that lacks a critical instability domain was not affected by TEB4 knockdown. Furthermore, TEB4 knockdown prolonged D2 activity half-life at least fourfold, even under conditions known to promote D2 ubiquitination. Neither exposure to 1 μM of the proteasomal inhibitor MG132 for 24 h nor RNA interference WSB-1 knockdown resulted in additive effects on D2 expression when combined with TEB4 knockdown. Similar results were obtained with MSTO-211 cells, which endogenously express D2, after TEB4 knockdown using a lentivirus-based transduction strategy. While TEB4 expression predominates in the hematopoietic lineage, both WSB-1 and TEB4 are coexpressed with D2 in a number of tissues and cell types, except the thyroid and brown adipose tissue, where TEB4 expression is minimal. We conclude that TEB4 interacts with and mediates loss of D2 activity, indicating that D2 ubiquitination and degradation can be tissue specific, depending on WSB-1 and TEB4 expression levels.

81 citations


Journal ArticleDOI
TL;DR: The results suggest that proteasome-inducing indirect antioxidants may facilitate the removal of the Aβ1–42 peptide and lead to the amelioration of abnormal protein-associated etiologies.
Abstract: The 26S proteasome plays a major role in degradation of abnormal proteins within the cell. The indirect antioxidant including sulforaphane (SFN) protects cells from oxidative damage by increasing the expression of Nrf2-target genes. It has been observed that the expression of multiple subunits of the proteasome was up-regulated by indirect antioxidants through the Nrf2 pathway. In the current study, the role of SFN in amyloid beta(1-42) (Abeta(1-42))-induced cytotoxicity has been investigated in murine neuroblastoma cells. Treatment with SFN protected cells from Abeta(1-42)-mediated cell death in Neuro2A and N1E 115 cells. Inhibition of proteasome activities by MG132 could abolish the protective effect of SFN against Abeta(1-42). Neuro2A cells, which were stably overexpressing the catalytic subunit of the proteasome PSMB5, showed an elevated resistance toward Abeta(1-42) toxicity compared to control cells. Furthermore, the in vitro assay demonstrated that the Abeta(1-42) peptide is degraded by the proteasome fraction. These results suggest that proteasome-inducing indirect antioxidants may facilitate the removal of the Abeta(1-42) peptide and lead to the amelioration of abnormal protein-associated etiologies.

70 citations


Journal ArticleDOI
TL;DR: It is found that blocking γ-secretase activity by DAPT and L-685,458 had no effect on the survival and proliferation of a panel of six breast cancer cell lines while Z-LLNle-CHO could cause cell death even at concentrations that inhibitedγ- secretase activity less efficiently.
Abstract: Introduction Notch is a family of transmembrane protein receptors whose activation requires proteolytic cleavage by γsecretase. Since aberrant Notch signaling can induce mammary carcinomas in transgenic mice and high expression levels of Notch receptors and ligands correlates with overall poor clinical outcomes, inhibiting γ-secretase with small molecules may be a promising approach for breast cancer treatment. Consistent with this hypothesis, two recent papers reported that γsecretase inhibitor I (GSI I), Z-LLNle-CHO, is toxic to breast cancer cells both in vitro and in vivo. In this study, we compared the activity and cytotoxicity of Z-LLNle-CHO to that of two highly specific GSIs, DAPT and L-685,458 and three structurally unrelated proteasome inhibitors, MG132, lactacystin, and bortezomib in order to study the mechanism underlying the cytotoxicity of Z-LLNle-CHO in breast cancer cells. Methods Three estrogen receptor (ER) positive cell lines, MCF7, BT474, and T47D, and three ER negative cell lines, SKBR3, MDA-MB-231, and MDA-MB-468, were used in this study. Both SKBR3 and BT474 cells also overexpress HER2/neu. Cytotoxicity was measured by using an MTS cell viability/ proliferation assay. Inhibition of γ-secretase activity was measured by both immunoblotting and immunofluorescent microscopy in order to detect active Notch1 intracellular domain. Proteasome inhibition was determined by using a cellbased proteasome activity assay kit, by immunoblotting to detect accumulation of polyubiquitylated protein, and by immunofluorescent microscopy to detect redistribution of cellular ubiquitin.

Journal ArticleDOI
TL;DR: It is suggested that the sperm proteasome participates in the capacitation process, and that its activity is modulated by PKs.
Abstract: The proteasome is a multicatalytic cellular complex present in human sperm that plays a significant role during several steps of mammalian fertilization. Here, we present evidence that the proteasome is involved in human sperm capacitation. Aliquots of highly motile sperm were incubated with proteasome inhibitors MG132 or epoxomicin. The percentage of capacitated sperm, the chymotrypsin-like activity of the proteasome, cAMP content, and the pattern of protein phosphorylation were assayed by using the chlortetracycline hydrochloride assay, a fluorogenic substrate, the cAMP enzyme immunoassay kit, and Western blot analysis, respectively. Our results indicate that treatment of sperm with proteasome inhibitors blocks the capacitation process, does not alter cAMP concentration, and changes the pattern of protein phosphorylation. To elucidate how proteasome activity is regulated during capacitation, sperm were incubated with: 1) tyrosine kinase (TK) inhibitors (genistein or herbimycin A); 2) protein kinase (PK) A inhibitors or activators (H89 and Rp-cAMPS, and 8-Br-cAMP, respectively); or 3) PKC inhibitors (tamoxifen or staurosporin) at different capacitation times. The chymotrypsin-like activity and degree of phosphorylation of the proteasome were then assayed. The results indicate that sperm treatment with TK and PKA inhibitors significantly decreases the chymotrypsin-like activity of the proteasome during capacitation. Immunoprecipitation and Western blot results suggest that the proteasome is phosphorylated during capacitation in a TK- and PKA-dependent pathway. In conclusion, we suggest that the sperm proteasome participates in the capacitation process, and that its activity is modulated by PKs.

Journal ArticleDOI
TL;DR: Evidence is provided that heat shock transcription factor 1 (HSF1) is involved in BAG3 induction by proteasome inhibitor MG132 and knockdown HSF1 by small interfering RNA attenuated the B AG3 upregulation due to MG132.
Abstract: BAG3 protein, a member of the BAG co-chaperones family, sustains cell survival in a variety of normal and neoplastic cell types, via its interaction with a variety of partners, such as the heat shock protein (HSP) 70, Bcl-2, Raf-1 and others. Expression of BAG3 is induced by some stressful stimuli, such as heat shock, heavy metal exposure. We have reported that proteasome inhibitors can also induce BAG3 expression at the transcriptional level and the induction of BAG3 compromises proteasome inhibitors-mediated apoptosis. However, the molecular mechanism of BAG3 upregulation has not been elucidated. In the current study, we provide evidence that heat shock transcription factor 1 (HSF1) is involved in BAG3 induction by proteasome inhibitor MG132. Using a series of varying lengths of 5'-flanking region of the BAG3 gene into luciferase reporter vectors, we found that MG132 stimulated the promoter activity via the -326/-233 and -825/-689 regions, which contains one putative heat shock-responsive element (HSE) for HSF1-binding, respectively. Site-directed deletion of the sites abrogated the enhanced reporter activity in response to MG132 treatment. Chromatin immunoprecipitation assay demonstrated that HSF1 directly bound to the MG132-responsive site on the BAG3 promoter. Activation of HSF1 occurred with MG132 along with BAG3 upregulation. Furthermore, knockdown HSF1 by small interfering RNA attenuated the BAG3 upregulation due to MG132.These results indicate that the proteasome inhibitor MG132 induces BAG3 expression through HSF1 activation.

Journal ArticleDOI
TL;DR: The interplay between Nedd4-2-related E3 ligases that regulate ACK1 levels and Cbl that modifies EGF receptor impinges on cell receptor dynamics, which is particularly pertinent given the report of genomic amplification of the ACK 1 locus in metastatic tumors.

Journal ArticleDOI
TL;DR: The results suggest that HO‐1, which is expressed when neurons are exposed to toxic stimuli capable of inducing protein misfolding, triggers proteosomal degradation of proteins and prevents intracellular accumulation of protein aggregates and inclusions.
Abstract: Proteosomal degradation of proteins is one of the major mechanisms of intracellular protein turnover. Failure of the proteosome to degrade misfolded protein is implicated in the accumulation of α-synuclein in Parkinson’s disease (PD). Heme oxygenase-1 (HO-1), an enzyme that converts heme to free iron, carbon monoxide (CO) and biliverdin (bilirubin precursor) is expressed in response to various stressors. HO-1 is up-regulated in PD- and Alzheimer’s disease-affected neural tissues. In this study, we found that HO-1 over-expression engenders dose-dependent decreases in α-synuclein protein levels in human neuroblastoma M17 cells. When over-expression of HO-1 was silenced in HO-1 transfected cells, level of α-synuclein was restored. Likewise, treatment of HO-1 over-expressing cells with the HO-1 inhibitor, tin mesoporphyrin, the iron chelator deferoxamine or antagonist of CO-dependent cGMP activation, methylene blue, mitigated the HO-1-induced reduction in α-synuclein levels. Furthermore, when HO-1 over-expressing cells were treated with the proteosome inhibitors, lactacystin and MG132, level of α-synuclein was almost completely restored. In contrast to the effect on α-synuclein [wild-type (WT)] levels, HO-1 over-expression did not significantly impact PD-associated α-synuclein (A30P) levels in these cells. HO-1 also significantly reduced aggregation of α-synuclein (WT) but not that of A30P. Our results suggest that HO-1, which is expressed when neurons are exposed to toxic stimuli capable of inducing protein misfolding, triggers proteosomal degradation of proteins and prevents intracellular accumulation of protein aggregates and inclusions. Resistance to HO-1 induced proteosomal degradation may render the familial PD-associated A30P mutation prone to toxic intracellular aggregation.

Journal ArticleDOI
TL;DR: It is concluded that Ang‐(1–7) down‐regulates TH activity and expression centrally leading to a decrease in the central NE system activity.
Abstract: Hypothalamic norepinephrine (NE) release regulates arterial pressure by altering sympathetic nervous system activity. Because angiotensin (Ang) (1-7) decreases hypothalamic NE release and this effect may be correlated with a diminished NE synthesis, we hypothesize that Ang-(1-7) down-regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis. We investigated the effect of Ang-(1-7) on centrally TH activity and expression. TH activity was evaluated by the release of tritiated water from (3)H-l-tyrosine. TH expression and phosphorylation were determined by western blot. Hypothalami from normotensive or spontaneously hypertensive rats pre-incubated with Ang-(1-7) showed a significant decrease in TH specific activity. Ang-(1-7) caused a decrease in TH phosphorylation at Ser19 and Ser40 residues. The heptapeptide induced a decrease in TH expression that was blocked by an AT(2) receptor antagonist and not by an AT(1) or Mas receptor antagonist, suggesting the involvement of AT(2) receptors. The proteasome inhibitor MG132 blocked the Ang-(1-7)-mediated TH reduction. In addition, Ang-(1-7) increased the amount of TH-ubiquitin complexes, indicating that the Ang-(1-7)-mediated TH degradation involves ubiquitin conjugation prior to proteasome degradation. We conclude that Ang-(1-7) down-regulates TH activity and expression centrally leading to a decrease in the central NE system activity.

Journal ArticleDOI
TL;DR: The mechanisms by which proteasome inhibition induced BAG3 expression remained unclear and the present experiments were designed to elucidate these mechanisms.
Abstract: Background and purpose: Proteasome inhibitors represent a novel class of anti-tumour agents that have clinical efficacy against haematological and solid cancers. The anti-apoptotic protein BAG3 is a member of the Bcl-2-associated athanogene family. We have previously shown that BAG3 is up-regulated after exposure to proteasome inhibitors and that inhibition of BAG3 sensitized cells to apoptosis induced by proteasome inhibition. However, the mechanisms by which proteasome inhibition induced BAG3 expression remained unclear and the present experiments were designed to elucidate these mechanisms. Experimental approach: Effects of the proteasome inhibitor MG132 on activation of mitogenic signalling pathways were evaluated in kidney cancer cells (A498, Caki1, Caki2), with Western blotting. Specific inhibitors against individual mitogenic signalling pathways, real-time reverse transcription-polymerase chain reaction and luciferase reporter assays were used to investigate the roles of mitogenic signalling pathways in BAG3 induction after proteasome inhibition. Cell death was evaluated using Annexin V/propidium iodide staining and subsequent FACS. Key results: MG132 activated several key mitogenic signalling pathways including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activities. Induction of BAG3 by MG132 was inhibited by blocking JNK, but not ERK1/2 and p38 MAPK signalling pathways. In addition, SP600125 and dominant-negative JNK1 suppressed BAG3 promoter-driven reporter gene expression. Furthermore, activation of the JNK pathway induced BAG in kidney cancer cells after treatment with MG132. Conclusions and implications: Our results suggested that the JNK pathway was associated with the protective response against proteasome inhibition, by mediating induction of BAG3.

Journal ArticleDOI
TL;DR: Proteasome inhibition reduces T cell‐mediated intestinal inflammation, but may interrupt both epithelial regeneration and barrier function of colonic mucosa, so optimal use of proteasome inhibitor should be kept in mind when considering its clinical application for patients with IBD.
Abstract: Immunoproteasome up-regulation enhances the processing of nuclear factor-kappaB (NF-kappaB) and degradation of IkappaBalpha, which correlates with increased amounts of NF-kappaB in the various cells. Aberrant activation of NF-kappaB is involved in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to elucidate the effect of proteasome inhibitor MG132 on experimental IBD. We investigated the effects of MG132 on intestinal inflammation and epithelial regeneration in both interleukin-10-deficient (IL-10(-/-)) mice and mice with dextran sulphate sodium (DSS)-induced colitis. Body weight, histological findings and tumour necrosis factor (TNF)-alpha mRNA expression, epithelial cell proliferation and NF-kappaB p65 activity in colonic tissues were examined. The effects of MG132 on cell proliferation, migration and multiple drug resistance 1 (MDR1) gene expression were determined in vitro. MG132 ameliorated intestinal inflammation of IL-10(-/-) mice by decreasing TNF-alpha mRNA expression in the colonic tissues, which was associated with suppression of NF-kappaB activation, and reduced significantly the number of Ki-67-positive intestinal epithelial cells. On the other hand, MG132 did not reduce intestinal inflammation in mice with DSS-induced colitis, and delayed significantly the recovery of body weight and epithelial regeneration. MG132 also suppressed significantly epithelial cell proliferation, cell migration and MDR1 gene expression in vitro. Proteasome inhibition reduces T cell-mediated intestinal inflammation, but may interrupt both epithelial regeneration and barrier function of colonic mucosa. Optimal use of proteasome inhibitor should be kept in mind when we consider its clinical application for patients with IBD.

Journal ArticleDOI
TL;DR: It is concluded that Ang II increases tyrosine nitration of PA700 resulting in accelerated GTP cyclohydrolase I degradation, BH4 deficiency, and consequent endothelial dysfunction in hypertension.
Abstract: The ubiquitin-proteasome system has been implicated in oxidative stress-induced endothelial dysfunction in cardiovascular diseases. However, the mechanism by which oxidative stress alters the ubiquitin-proteasome system is poorly defined. The present study was conducted to determine whether oxidative modifications of PA700, a 26S proteasome regulatory subunit, contributes to angiotensin II (Ang II)-induced endothelial dysfunction. Exposure of human umbilical vein endothelial cells to low concentrations of Ang II, but not vehicle, for 6 hours significantly decreased the levels of tetrahydro-l-biopterin (BH4), an essential cofactor of endothelial NO synthase, which was accompanied by a decrease in GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis. In addition, Ang II increased both tyrosine nitration of PA700 and the 26S proteasome activity, which were paralleled by increased coimmunoprecipitation of PA700 and the 20S proteasome. Genetic inhibition of NAD(P)H oxidase or administration of uric acid (a peroxynitrite scavenger) or N(G)-nitro-l-arginine methyl ester (nonselective NO synthase inhibitor) significantly attenuated Ang II-induced PA700 nitration, 26S proteasome activation, and reduction of GTP cyclohydrolase I and BH4. Finally, Ang II infusion in mice decreased the levels of both BH4 and GTP cyclohydrolase I and impaired endothelial-dependent relaxation in isolated aortas, and all of these effects were prevented by the administration of MG132, a potent inhibitor for 26S proteasome. We conclude that Ang II increases tyrosine nitration of PA700 resulting in accelerated GTP cyclohydrolase I degradation, BH4 deficiency, and consequent endothelial dysfunction in hypertension.

Journal ArticleDOI
TL;DR: It is summarized that oroxylin A stabilized p53 expression and induced apoptosis at the posttranslational level via downregulatingMDM2 expression and interfering MDM2‐modulated proteasome‐related p53 degradation.
Abstract: Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, exhibits anticancer activity and induces apoptosis in human hepatocellular carcinoma HepG2 cells according to our previous data. In this study, we investigate whether p53 is involved in oroxylin A-triggered viability inhibition and apoptosis induction in cancer cells. In a panel of different cancer cell lines, more potent inhibitory effects of oroxylin A were observed in wtp53 cells than those in mtp53 or p53-null cells. Moreover, p53-siRNA-transfected HepG2 cells showed lower levels of apoptosis induced by oroxylin A than control-siRNA-transfected cells. Likewise, after oroxylin A treatment, p53-null K-562 cells displayed promoted apoptosis rate when transfected with wtp53 plasmid. Western blot and real-time RT-PCR assay revealed that oroxylin A markedly upregulated p53 protein expression in HepG2 and p53-overexpressing K-562 cells, but had no influence on p53 mRNA synthesis. Furthermore, after co-treatment with cycloheximide, oroxylin A still exerted a little effect on p53 expression. The negative regulator of p53, MDM2 protein was detected, and downregulated expression was observed. In the presence of MG132, an inhibitor of proteasome-mediated proteolysis, no change in p53 expression was obtained. Additionally, the antioxidant N-acetyl-L-cysteine could obviously abrogate p53 stabilization triggered by oroxylin A. Therefore, it is summarized that oroxylin A stabilized p53 expression and induced apoptosis at the posttranslational level via downregulating MDM2 expression and interfering MDM2-modulated proteasome-related p53 degradation. This indicated that oroxylin A could be served as a potential, novel agent candidate for cancer therapy. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
Mi-Ja Lee1, Keun-Hong Kee1, Chae-Hong Suh1, Sung-Chul Lim1, Seon-Hee Oh1 
TL;DR: Both endoplasmic reticulum stress- and mitochondria-mediated death pathways are involved in capsaicin-induced apoptosis in human breast cell line MCF10A.

Journal ArticleDOI
01 Oct 2009-Shock
TL;DR: The data suggest that, in combination, LPS and IFN-&ggr; induce a prolonged expression of NOS2 and excessive production of NO that reciprocally alter Akt and AMPK activity and consequently downregulate translation via reduced mammalian target of rapamycin signaling.
Abstract: The purpose of the present study was to test the hypothesis that endogenous nitric oxide (NO) negatively affects translation in skeletal muscle cells after exposure to a combination of endotoxin (LPS) and interferon (IFN)γ. Individually LPS and IFNγ did not alter protein synthesis but in combination they inhibited protein synthesis by 80% in C2C12 myotubes. The combination of LPS and IFNγ dramatically down regulated the auto-phosphorylation of the mammalian target of rapamycin (mTOR) and its substrates S6K1 and 4EBP-1. The phosphorylation of ribosomal protein S6 was decreased whereas phosphorylation of elongation factor-2 (eEF-2) and raptor was enhanced consistent with defects in both translation initiation and elongation. Reduced S6 phosphorylation occurred 8–18 h after LPS/IFNγ and coincided with a prolonged upregulation of NOS2 mRNA and protein. NOS2 protein expression and the LPS/IFNγ –induced fall in phosphorylated S6 were prevented by the proteasome inhibitor MG132. The general NOS inhibitor L-NAME and the specific NOS2 inhibitor 1400W also prevented the LPS/IFNγ-induced decrease in protein synthesis and restored translational signaling. LPS/IFNγ down regulated the phosphorylation of multiple Akt substrates including the proline rich Akt substrate-40 (PRAS40) while enhancing the phosphorylation of raptor on an AMPK regulated site. The negative effects of LPS/IFNγ were blunted by the AMPK inhibitor compound C. The data suggest that in combination LPS and IFNγ induce a prolonged expression of NOS2 and excessive production of NO that reciprocally alters Akt and AMPK activity and consequently down regulates translation via reduced mTOR signaling.

Journal ArticleDOI
TL;DR: Treatment with non-toxic doses of zinc in association to the ionophore compound pyrrolidine dithiocarbamate (PDTC) inhibits p53(-/-) pancreatic cancer cell growth much more efficiently than gemcitabine, the gold standard chemotherapeutic agent for pancreaticcancer.

Journal ArticleDOI
TL;DR: It is shown that depletion of CLU affects the growth of PC‐3 prostate cancer cells and proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumor suppressor factor.
Abstract: The Clusterin (CLU) gene produces different forms of protein products, which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA targeting all CLU mRNA variants, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e., H3 mRNA, PCNA, and cyclins A, B1, and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 h. CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, including the nuclear form of CLU (nCLU), and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumor suppressor factor. J. Cell. Physiol. 219: 314–323, 2009. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Proteasome inhibitors were much more effective in sensitizing LNCaP cells to TNFα-induced apoptosis compared to IKK inhibitors at the concentrations when both types of agents similarly attenuated NF-κB activity.
Abstract: Nuclear factorkappaB (NFkappaB) plays a critical role in cancer development and progression. Thus, the NFkappaB signaling pathway provides important targets for cancer chemoprevention and anticancer chemotherapy. The central steps in NFkappaB activation are phosphorylation and proteasome-dependent degradation of its inhibitory proteins termed IkappaBs. Consequently, the major pharmacological approaches to target NFkappaB include (1) repression of IkappaB kinases (IKKs) and (2) blocking the degradation of IkappaBs by proteasome inhibitors. We quantitatively compared the efficacy of various proteasome inhibitors (MG132, lactacystin and epoxomicin) and IKK inhibitors (BAY 11-7082 and PS1145) to block NFkappaB activity induced by TNFalpha or TPA and to sensitize LNCaP prostate carcinoma cells to apoptosis. Our studies revealed significant differences between these two classes of NFkappaB inhibitors. We found that proteasome inhibitors epoxomicin and MG132 attenuated NFkappaB induction much more effectively than the IKK inhibitors. Furthermore, in contrast to IKK inhibitors, all studied proteasome inhibitors specifically blocked TPA-induced generation de novo of NFkappaB p50 homodimers--(p50/p50). These results suggest that the proteasome plays a dominant role in TPA-induced formation of functional p50 homodimers, while IKK activity is less important for this process. Interestingly, profound attenuation of p50/p50 DNA-binding does not reduce the high potency of proteasome inhibitors to suppress NFkappaB-dependent transcription. Finally, proteasome inhibitors were much more effective in sensitizing LNCaP cells to TNFalpha-induced apoptosis compared to IKK inhibitors at the concentrations when both types of agents similarly attenuated NFkappaB activity. We conclude that this remarkable pro-apoptotic potential of proteasome inhibitors is partially mediated through NFkappaB-independent mechanism.

Journal ArticleDOI
Sven Bieler1, Silke Meiners1, Verena Stangl1, Thomas Pohl, Karl Stangl1 
TL;DR: Proteasome‐dependent accumulation of the anti‐oxidative sensor proteins DJ‐1, peroxiredoxin‐1 and ‐6 was accompanied by dose‐dependent induction of oxidative stress after 2 h of proteasome inhibition and contributed to the differential transcriptional stress response to low‐ and high‐dose prote asome inhibition.
Abstract: Effective inhibition of the proteasome by high doses of proteasome inhibitors induces apoptotic cell death. In contrast, partial proteasome inhibition by low inhibitor doses mediates a protective cellular stress response. The early targets and mediators of these dose-dependent effects of proteasome inhibitors are unknown. Primary human umbilical cord vein endothelial cells were treated with low and high doses of the proteasome inhibitor MG132 for 2 h. In a combined 2-DE and MS approach, we identified more than 20 new targets of proteasome inhibition. These proteins are involved in cell cycle regulation, signaling, cytoskeletal rearrangement, and cellular stress response. Accompanying Affymetrix analysis revealed that these proteins are not regulated on the transcriptional level but are mainly stabilized by proteasome inhibition. The proteasome-dependent accumulation of the anti-oxidative sensor proteins DJ-1, peroxiredoxin-1 and -6 was accompanied by dose-dependent induction of oxidative stress after 2 h of proteasome inhibition and contributed to the differential transcriptional stress response to low- and high-dose proteasome inhibition: Whereas low-dose proteasome inhibition induces a transcriptional profile reminiscent of a physiological stress response that preconditions and protects endothelial cells from oxidative stress, high inhibitor doses induce massive transcriptional dysregulation and pronounced oxidative stress triggering apoptosis.

Journal ArticleDOI
TL;DR: Bortezomib was administered at a dose of 50 µg/kg body weight to Dahl salt-sensitive rats (DSSR) on high-salt diet and led to decreased hypertension-induced oxidative stress and reduced expression of vascular cell adhesion molecule 1 (VCAM-1) in the aortae.
Abstract: Proteasome inhibitors are considered to have anti-inflammatory therapeutic potential. However, recent reports addressing proteasome inhibition in the vascular system are controversial, ranging from beneficial anti-inflammatory and anti-oxidative effects to potentiation of inflammation and oxidative stress. This study was based on the hypothesis that the divergent effects might be a result of a differential and dose-dependent responsiveness of vascular cells to proteasome inhibitors. We tested whether low doses of proteasome inhibitors would favor anti-inflammatory effects in vascular cells in vitro and in vivo. Human umbilical vein endothelial cells (HUVEC) were preincubated with proteasome inhibitors MG132 and MG262 at concentrations that did not affect cell viability during a 24-h treatment. Upon addition of tumor necrosis factor alpha (TNF-alpha) the induced expression of adhesion molecules and the adhesion of monocytic THP-1 cells to HUVECs was significantly lowered. However, nuclear translocation of NF-kappaB was only slightly diminished. Low-dose pretreatment with proteasome inhibitors decreased TNF-alpha-induced generation of reactive oxygen species in HUVEC. Bortezomib was administered at a dose of 50 microg/kg body weight to Dahl salt-sensitive rats (DSSR) on high-salt diet. This low-dose proteasome inhibition led to decreased hypertension-induced oxidative stress and reduced expression of vascular cell adhesion molecule 1 (VCAM-1) in the aortae.

Journal ArticleDOI
TL;DR: Bioluminescence analysis showed that proteasome inhibition with bortezomib or MG132 attenuated overall ligand-induced degradation of EGFR, pointing to a potential mechanism for the synergistic therapeutic effects of combination EGFR- and proteAsome-targeted therapies.
Abstract: Epidermal growth factor (EGF) receptor (EGFR), a member of the EGF superfamily of receptor tyrosine kinases, is a critical regulator of cell growth and an important target for single agent and combination anticancer therapeutics. To further investigate the dynamics of ligand-induced EGFR processing and regulation noninvasively, we developed a chimeric EGFR-firefly luciferase (FLuc) fusion reporter to directly monitor processing of EGFR in real-time. In a stable HeLa cell line expressing the reporter at physiologically relevant levels, bioluminescence imaging continuously monitored reporter dynamics, correlating with the ligand-induced response of endogenous EGFR as determined by Western blot, subcellular localization of an EGFR-green fluorescent protein (GFP) fusion protein, and validated pharmacologic responses. The signaling competency of the reporter was confirmed by gene rescue experiments in EGFR-null cells. Bioluminescence analysis further showed that proteasome inhibition with bortezomib or MG132 attenuated overall ligand-induced degradation of EGFR. In cells expressing EGFR-GFP, pretreatment with proteasome inhibitors trapped essentially all of the receptor at the cell membrane both before and after ligand-induced activation with EGF. Furthermore, proteasome inhibition enhanced receptor ubiquitination in both the basal and ligand-activated states as well as delayed the processing of ligand-activated phosphorylation of the receptor, kinetically correlating with attenuated receptor degradation. These observations point to a potential mechanism for the synergistic therapeutic effects of combination EGFR- and proteasome-targeted therapies.

Journal ArticleDOI
TL;DR: In conclusion, inhibitors of canonical pathways to NF-κB activation may be useful in alleviating radiation toxicity in patients.
Abstract: Inflammatory changes are a major component of the normal tissue response to ionizing radiation, and increased nuclear factor kappaB (NF-kappaB) activity is an important mediator of inflammatory responses. Here, we used zebrafish embryos to assess the capacity of two different classes of pharmacologic agents known to target NF-kappaB to modify radiation toxicity in the vertebrate organism. These were proteasome inhibitors, including lactacystin, MG132, and PS-341 (Bortezomib/VELCADE), and direct inhibitors of NF-kappaB activity, including ethyl pyruvate (EP) and the synthetic triterpenoid CDDO-TFEA (RTA401), among others. The proteasome inhibitors either did not significantly affect radiation sensitivity of zebrafish embryos (MG132, lactacystin) or rendered zebrafish embryos more sensitive to the lethal effects of ionizing radiation (PS-341). Radiosensitization by PS-341 was reduced in fish with impaired p53 expression or function but not associated with enhanced expression of select p53 target genes. In contrast, the direct NF-kappaB inhibitors EP and CDDO-TFEA significantly improved overall survival of lethally irradiated zebrafish embryos. In addition, direct NF-kappaB inhibition reduced radiation-induced apoptosis in the central nervous system, abrogated aberrations in body axis development, restored metabolization and secretion of a reporter lipid through the gastrointestinal system, and improved renal clearance compromised by radiation. In contrast to amifostine, EP and CDDO-TFEA not only protected against but also mitigated radiation toxicity when given 1 to 2 hours postexposure. Finally, four additional IkappaB kinase inhibitors with distinct mechanisms of action similarly improved overall survival of lethally irradiated zebrafish embryos. In conclusion, inhibitors of canonical pathways to NF-kappaB activation may be useful in alleviating radiation toxicity in patients.

Journal ArticleDOI
TL;DR: It is confirmed here that HIV-1 infection and Vpr expression reduce the level of endogenous UNG2, but this effect is not reverted by treatment with the proteasome inhibitor MG132, and this reduction is not mediated by Vpr binding toUNG2 and is independent of the Vpr-induced G2 arrest.
Abstract: It was recently reported that human immunodeficiency virus type 1 (HIV-1) Vpr induced the proteasomal degradation of the nuclear UNG2 enzyme for efficient virus replication. We confirm here that HIV-1 infection and Vpr expression reduce the level of endogenous UNG2, but this effect is not reverted by treatment with the proteasome inhibitor MG132. Moreover, this reduction is not mediated by Vpr binding to UNG2 and is independent of the Vpr-induced G2 arrest. Finally, we show that Vpr influences the UNG2 promoter without affecting UNG1 gene expression. These data indicate that the Vpr-induced decrease of UNG2 level is mainly related to a transcriptional effect.