scispace - formally typeset
Search or ask a question

Showing papers on "MG132 published in 2012"


Journal ArticleDOI
TL;DR: Results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway.
Abstract: Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalein pretreatment significantly prevented cells from 6-hydroxydopamine (6-OHDA)-induced damage by attenuating cellular apoptosis. However, post-treatment with baicalein did not show any restorative effect against 6-OHDA-induced cellular damage. We found that baicalein increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1(HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in a time- and concentration-dependent manner in PC12 cells. In addition, baicalein induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) transcriptional activity, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, we demonstrated that cytoprotective effects of baicalein could be attenuated by Nrf2 siRNA transfection and the HO-1 inhibitor zinc protoporphyrin (Znpp) as well as the proteasome inhibitor MG132. Furthermore, PKCα and AKT protein phosphorylation were up-regulated by baicalein pretreatment, and selective inhibitors targeted to PKC, PI3K, and AKT could block the cytoprotective effects of baicalein. Taken together, our results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway. Ultimately, the neuroprotective effects of baicalein may endue baicalein as a promising candidate for the prevention of PD.

143 citations


Journal ArticleDOI
TL;DR: The molecular mechanisms underlying the antiproliferative effects of GTP may be similar to those of histone deacetylase (HDAC) inhibitors and a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition is suggested.
Abstract: Green tea polyphenols (GTPs) reactivate epigenetically silenced genes in cancer cells and trigger cell cycle arrest and apoptosis; however, the mechanisms whereby these effects occur are not well understood. We investigated the molecular mechanisms underlying the antiproliferative effects of GTP, which may be similar to those of histone deacetylase (HDAC) inhibitors. Exposure of human prostate cancer LNCaP cells (harboring wild-type p53) and PC-3 cells (lacking p53) with 10–80 μg/ml of GTP for 24 h resulted in dose-dependent inhibition of class I HDAC enzyme activity and its protein expression. GTP treatment causes an accumulation of acetylated histone H3 in total cellular chromatin, resulting in increased accessibility to bind with the promoter sequences of p21/waf1 and Bax, consistent with the effects elicited by an HDAC inhibitor, trichostatin A. GTP treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. Furthermore, treatment of cells with proteasome inhibitor, MG132 together with GTP prevented degradation of class I HDACs, compared with cells treated with GTP alone, indicating increased proteasomal degradation of class I HDACs by GTP. These alterations were consistent with G0–G1 phase cell cycle arrest and induction of apoptosis in both cell lines. Our findings provide new insight into the mechanisms of GTP action in human prostate cancer cells irrespective of their p53 status and suggest a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition.

133 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle, providing strong experimental evidence that SARV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses.
Abstract: The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5(-/-) mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle.

126 citations


Journal ArticleDOI
03 Jan 2012-PLOS ONE
TL;DR: In this article, the authors identify the functionally important miRNA species, which regulate apoptosis in CTCL, and demonstrate that miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132).
Abstract: Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs), we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132). miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sezary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL.

103 citations


Journal ArticleDOI
TL;DR: It is demonstrated that nuclear factor‐kappa B (NF‐κB) transcription factor is essential for TWEAK‐induced expression of MuRF1 and Beclin1, and the results suggest that caspases contribute, at least in part, to the activation of NF-κB in response to TWEak treatment.
Abstract: Proinflammatory cytokine TWEAK has now emerged as a key mediator of skeletal muscle-wasting in many catabolic conditions. However, the mechanisms by which TWEAK induces muscle proteolysis remain poorly understood. Here, we have investigated the role of ubiquitin-proteasome system, autophagy, and caspases in TWEAK-induced muscle wasting. Addition of TWEAK to C2C12 myotubes stimulated the ubiquitination of myosin heavy chain (MyHC) and augmented the expression of E3 ubiquitin ligase MuRF1. Pretreatment of myotubes with proteasome inhibitors MG132 or lactacystin or knockdown of MuRF1 by RNAi blocked the TWEAK-induced degradation of MyHC and myotube atrophy. TWEAK increased the expression of several autophagy-related molecules. Moreover, the inhibitors of autophagy improved the levels of MyHC in TWEAK-treated myotubes. TWEAK also increased activity of caspases in C2C12 myotubes. Pan-caspase or caspase 3 inhibitory peptide inhibited the TWEAK-induced loss of MyHC and myotube diameter. Our study demonstrates that nuclear factor-kappa B (NF-κB) transcription factor is essential for TWEAK-induced expression of MuRF1 and Beclin1. Furthermore, our results suggest that caspases contribute, at least in part, to the activation of NF-κB in response to TWEAK treatment. Collectively, the present study provides novel insight into the mechanisms of action of TWEAK in skeletal muscle.

81 citations


Journal ArticleDOI
TL;DR: Examination of the mechanisms underlying cytotoxicity, selectivity and adjuvant potential of the proteasome inhibitor MG132 in a panel of glioblastoma cells and in normal astrocytes revealed profound and selective toxicity in GBMs, being a potential agent for further testing in animal models of the disease.
Abstract: Proteasome inhibitors are emerging as a new class of anticancer agents. In this work, we examined the mechanisms underlying cytotoxicity, selectivity and adjuvant potential of the proteasome inhibitor MG132 in a panel of glioblastoma (GBM) cells (U138MG, C6, U87 and U373) and in normal astrocytes. MG132 markedly inhibited GBM cells growth irrespective of the p53 or PTEN mutational status of the cells whereas astrocytic viability was not affected, suggesting a selective toxicity of MG132 to cancerous glial cells. Mechanistically, MG132 arrested cells in G2/M phase of the cell cycle and increased p21WAF1 protein immunocontent. Following cell arrest, cells become apoptotic as shown by annexin-V binding, caspase-3 activation, chromatin condensation and formation of sub-G1 apoptotic cells. MG132 promoted mitochondrial depolarization and decreased the mitochondrial antiapoptotic protein bcl-xL; it also induced activation of JNK and p38, and inhibition of NFkappaB and PI3K/Akt survival pathways. Pre-treatment of GBMs with the mitochondrial permeability transition pore inhibitor, bongkrekic acid, or pharmacological inhibitors of JNK1/2 and p38, SP600125 and SB203580, attenuated MG132-induced cell death. Besides its apoptotic effect alone, MG132 also enhanced the antiglioma effect of the chemotherapeutics cisplatin, taxol and doxorubicin in C6 and U138MG cells, indicating an adjuvant/chemosensitizer potential. In summary, MG132 exerted profound and selective toxicity in GBMs, being a potential agent for further testing in animal models of the disease.

74 citations


Journal ArticleDOI
TL;DR: It is observed that trehalose promoted the clearance of A53T α- synuclein but not WT α-Syn in PC12 cells, and the increased LC3 and Lysotracker RED positive autolysosomes were confirmed, and in vivo research will be needed to verify the effectiveness oftrehalose in treating PD.
Abstract: Accumulation of α-synuclein (α-Syn) is a common pathology for both familiar and sporadic Parkinson's disease (PD), enhancing its clearance might be a promising strategy for treating PD. To assess the potential of trehalose in this regard, we investigated its effect on the PC12 cells overexpressing wild type (WT) or A53T mutant α-Syn and the implicated pathway it might mediated. We observed that trehalose promoted the clearance of A53T α-Syn but not WT α-Syn in PC12 cells, and confirmed the increased LC3 and Lysotracker RED positive autolysosomes by using lysotracker and LC3 staining, the enhanced expression of LC3-II in Western blot, and more autophagosomes under Transmission Electron Microscope in a dose dependent manner after the trehalose treatment. The activation of autophagy can be alleviated by applying macroautophagy inhibitor 3-methyladenine (3-MA). In addition, degradation of A53T and WT α-Syn was blocked after Ubiquitin Proteasome System (UPS) inhibitor (MG132) was applied in those PC12 cells overexpressing A53T or WT α-Syn, suggesting that A53T α-Syn could be degraded by both UPS and macroautophagy. But the effect of trehalose on A53T α-Syn is mainly mediated through the macroautophagy pathway, which is not a dominant way for WT α-Syn clearance. Further in vivo research will be needed to verify the effectiveness of trehalose in treating PD.

71 citations


Journal ArticleDOI
TL;DR: It is suggested that Hsp90 inhibitor prevents the development of renal fibrosis via a mechanism dependent on Smurf2-mediated degradation of TβRII.

67 citations


Journal ArticleDOI
07 May 2012-PLOS ONE
TL;DR: Renal proteasome activity, a major regulator of NFκB-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasomesome activity was significantly blunted by nicotinic agonist administration in vivo.
Abstract: Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine (1 mg/kg) or GTS-21 (4 mg/kg) significantly abrogated renal leukocyte infiltration (by 40%) and attenuated kidney injury. These renoprotective effects were accompanied by reduced systemic and localized kidney inflammation during LPS-induced AKI. Consistent with these observations, nicotinic agonist treatment significantly decreased renal IκBα degradation and NFκB activation during LPS-induced AKI. Treatment of human kidney cells with nicotinic agonists, an NFκB inhibitor (Bay11), or a proteasome inhibitor (MG132) effectively inhibited their inflammatory responses following stimulation with LPS or TNFα. Renal proteasome activity, a major regulator of NFκB-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasome activity was significantly blunted by nicotinic agonist administration in vivo. Taken together, our results identify enhanced renal proteasome activity during LPS-induced AKI and the suppression of both proteasome activity and inflammation by nicotinic agonists to attenuate LPS-induced kidney injury.

64 citations


Journal ArticleDOI
27 Dec 2012-PLOS ONE
TL;DR: It is shown that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.
Abstract: The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

58 citations


Journal ArticleDOI
TL;DR: The results suggest that Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis via Mcl-1 phosphorylation, promoting its degradation and subsequently releasing Bak from sequestration.

Journal ArticleDOI
TL;DR: Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta.

Journal ArticleDOI
TL;DR: Early hyperglycemia enhances 26S proteasome functionality, not autophagy or unfolded protein response, through peroxynitrite/superoxide-mediated PA700-dependent proteasomal activation, which elevates NF- ĸB-mediated endothelial inflammatory response in early diabetes mellitus.
Abstract: Objective— Although the connection of oxidative stress and inflammation has been long recognized in diabetes mellitus, the underlying mechanisms are not fully elucidated. This study defined the role of 26S proteasomes in promoting vascular inflammatory response in early diabetes mellitus. Methods and Results— The 26S proteasome functionality, markers of autophagy, and unfolded protein response were assessed in (1) cultured 26S proteasome reporter cells and endothelial cells challenged with high glucose, (2) transgenic reporter (Ub G76V –green fluorescence protein) and wild-type (C57BL/6J) mice rendered diabetic, and (3) genetically diabetic (Akita and OVE26) mice. In glucose-challenged cells, and also in aortic, renal, and retinal tissues from diabetic mice, enhanced 26S proteasome functionality was observed, evidenced by augmentation of proteasome (chymotrypsin-like) activities and reduction in 26S proteasome reporter proteins, accompanied by increased nitrotyrosine-containing proteins. Also, whereas inhibitor of the nuclear factor κ-light-chain-enhancer of activated B cells α proteins were decreased, an increase was found in nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) nucleus translocation, which enhanced the NF-κB–mediated proinflammatory response, without affecting markers of autophagy or unfolded protein response. Importantly, the alterations were abolished by MG132 administration, small interfering RNA knockdown of PA700 (proteasome activator protein complex), or superoxide scavenging in vivo. Conclusion— Early hyperglycemia enhances 26S proteasome functionality, not autophagy or unfolded protein response, through peroxynitrite/superoxide-mediated PA700-dependent proteasomal activation, which elevates NF- ĸB-mediated endothelial inflammatory response in early diabetes mellitus.

Journal ArticleDOI
TL;DR: It is demonstrated that supplementation of HF diet with betaine, an antioxidant and methyl donor, alleviated high-fat-induced adipose tissue 4-HNE increase and attenuated plasma adiponectin decline.

Journal ArticleDOI
TL;DR: It is concluded that the accumulation of CSN proteins might enhance the degradation of ubiquitinated proteins independent of hypoxia caused by flooding, thereby lowering their abundance during flooding stress.

Journal ArticleDOI
TL;DR: When the levels of missense menin mutants that are targeted to the proteasome are normalized they may function similarly to WT menin, and targeting specific components of the proteAsome chaperone pathway could be beneficial in treating a subset of MEN1 cases.
Abstract: Context: In multiple endocrine neoplasia type 1 (MEN1) characterized by tumors of parathyroid, enteropancreas, and anterior pituitary, missense mutations in the MEN1 gene product, menin, occur in a subset of cases. The mutant proteins are degraded by the proteasome. However, whether their expression and activity can be restored is not known. Objective: Our objective was to functionally characterize a panel of 16 menin missense mutants, including W423R and S443Y identified in new MEN1 families, with respect to protein stability, targeting to the proteasome and restoration of expression by proteasome inhibitors and expression and function by small interfering RNA technology. Methods: Flag-tagged wild-type (WT) and missense menin mutant expression vectors were transiently transfected in human embryonic kidney (HEK293) and/or rat insulinoma (Rin-5F) cells. Results: The majority of mutants were short-lived, whereas WT menin was stable. Proteasome inhibitors MG132 and PS-341 and inhibition of the chaperone, hea...

Journal ArticleDOI
24 May 2012-Oncogene
TL;DR: It is shown that Sox4 protein is rapidly degraded by the proteasome as indicated by pharmacological inhibition with Mg132 and epoxymycin and that the Sox4 C-terminal domain regulates polyubiquitin-independent proteasomal degradation of Sox4 that can be modulated by interaction with syntenin.
Abstract: The transcription factor Sox4 is aberrantly expressed in many human tumors and can modulate tumorigenesis and metastases of murine tumors in vivo. However, mechanisms that control Sox4 function remain poorly defined. It has recently been observed that DNA damage increases Sox4 protein expression independently of Sox4 mRNA levels, suggesting an as yet undefined post-transcriptional mechanism regulating Sox4 expression and functionality. Here, we show that Sox4 protein is rapidly degraded by the proteasome as indicated by pharmacological inhibition with Mg132 and epoxymycin. Sox4 half-life was found to be less than 1 h as evident by inhibition of protein synthesis using cycloheximide. Ectopic expression of Sox4 deletion mutants revealed that the C-terminal 33 residues of Sox4 were critical in modulating its degradation in a polyubiquitin-independent manner. Syntenin, a Sox4 binding partner, associates with this domain and was found to stabilize Sox4 expression. Syntenin-induced stabilization of Sox4 correlated with Sox4-syntenin relocalization to the nucleus, where both proteins accumulate. Syntenin overexpression or knockdown in human tumor cell lines was found to reciprocally modulate Sox4 protein expression and transcriptional activity implicating its role as a regulator of Sox4. Taken together, our data demonstrate that the Sox4 C-terminal domain regulates polyubiquitin-independent proteasomal degradation of Sox4 that can be modulated by interaction with syntenin. As aberrant Sox4 expression has been found associated with many human cancers, modulation of Sox4 proteasomal degradation may impact oncogenesis and metastatic properties of tumors.

Journal ArticleDOI
TL;DR: It is suggested that ursolic acid induces apoptosis via activation of caspase and phosphorylation of GSK 3β in SK-OV-3 cancer cells as a potent anti-cancer agent for ovarian cancer therapy.
Abstract: Although ursolic acid isolated from Oldenlandia diffusa (Rubiaceae) was known to have anticancer activities in prostate, breast and liver cancers, the underlying mechanism of ursolic acid in ovarian cancer cells was not investigated so far. In the present study, the apoptotic mechanism of ursolic acid was elucidated in SK-OV-3 ovarian cancer cells by 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, cell cycle analysis and Western blotting. Ursolic acid exerted cytotoxicity against SK-OV-3 and A2780 ovarian cancer cells with IC₅₀ of ca. 50 and 65 µM, respectively. Apoptotic bodies were observed in ursolic acid treated SK-OV-3 cells. Also, ursolic acid significantly increased ethidium homodimer stained cells and sub-G1 apoptotic portion in SK-OV-3 cells. Consistently, Western blotting revealed that ursolic acid effectively cleaved poly(ADP-ribose) polymerase (PARP), caspase-9 and -3, suppressed the expression of survival genes such as c-Myc, Bcl-x(L) and astrocyte elevated gene (AEG)-1, and upregulated phosphorylation of extracellular signal-regulated kinase (ERK) in SK-OV-3 cells. Interestingly, ursolic acid suppressed β-catenin degradation as well as enhanced phosphorylation of glycogen synthase kinase 3 beta (GSK 3β). Furthermore, GSK 3β inhibitor SB216763 blocked the cleavages of caspase-3 and PARP induced by ursolic acid and proteosomal inhibitor MG132 disturbed down-regulation of β-catenin, activation of caspase-3 and decreased mitochondrial membrane potential (MMP) induced by ursolic acid in SK-OV-3 cells. Overall, our findings suggest that ursolic acid induces apoptosis via activation of caspase and phosphorylation of GSK 3β in SK-OV-3 cancer cells as a potent anti-cancer agent for ovarian cancer therapy.

Journal ArticleDOI
TL;DR: Using neonatal cardiomyocytes, it is found that ligand‐induced promoter activity of RAR and RXR was significantly suppressed by HG, and the impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia inducedCardiomyocyte apoptosis.
Abstract: The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.

Journal ArticleDOI
TL;DR: In IAV-infected cells, p53 was stabilized and its half-life was remarkably extended, and NP was found to associate with p53 and to impair the p53-Mdm2 interaction and MDM2-mediated p53 ubiquitination, demonstrating its role in inhibiting Mdm2- mediated p53 Ubiquitination and degradation.

Journal ArticleDOI
TL;DR: A new role for NF-Y is unveiled in the regulation of human proteasome genes and it is suggested thatNF-Y may be a potential target for cancer therapy.


Journal ArticleDOI
TL;DR: An increase in OCT4A ubiquitination downstream of MEK1 activation, and this could account for the protein loss observed after FGF2 treatment and MeK1CA transfection.

Journal ArticleDOI
TL;DR: Vildagliptin elicits protective effects on pancreatic β cells, possibly through C/EBPB degradation, and has potential for preventing the progression of type 2 diabetes.
Abstract: The development of type 2 diabetes is accompanied by a progressive decline in β-cell mass and function. Vildagliptin, a dipeptidyl peptidase 4 inhibitor, is representative of a new class of antidiabetic agents that act through increasing the expression of glucagon-like peptide-1. The protective effect of this agent on β cells was studied in diabetic mice. Diabetic pancreatic β cell-specific C/EBPB transgenic (TG) mice exhibit decreased β-cell mass associated with increased apoptosis, decreased proliferation, and aggravated endoplasmic reticulum (ER) stress. Vildagliptin was orally administered to the TG mice for a period of 24 weeks, and the protective effects of this agent on β cells were examined, along with the potential molecular mechanism of protection. Vildagliptin ameliorated hyperglycemia in TG mice by increasing the serum concentration of insulin and decreasing the serum concentration of glucagon. This agent also markedly increased β-cell mass, improved aggravated ER stress, and restored attenuated insulin/IGF1 signaling. A decrease in pancreatic and duodenal homeobox 1 expression was also observed in β cells isolated from our mouse model, but this was also restored by vildagliptin treatment. The expression of C/EBPB protein, but not mRNA, was unexpectedly downregulated in vildagliptin-treated TG mice and in exenatide-treated MIN6 cells. Activation of the GLP1 pathway induced proteasome-dependent C/EBPB degradation in β cells as the proteasome inhibitor MG132 restored the downregulation of C/EBPB protein by exenatide. Vildagliptin elicits protective effects on pancreatic β cells, possibly through C/EBPB degradation, and has potential for preventing the progression of type 2 diabetes.

Journal ArticleDOI
16 Mar 2012-PLOS ONE
TL;DR: It is demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest and the down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of cele Coxib in UC cells.
Abstract: Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.

Journal ArticleDOI
TL;DR: There is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1 and there appears to be a greater amount of Ubiquitinylated U CP1 associated with BAT mitochondria from cold-acclimated animals.

Journal ArticleDOI
17 Jan 2012-PLOS ONE
TL;DR: Results suggest that 26S proteasome activation by ONOO−-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.
Abstract: Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO−) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets -fed LDL receptor knockout (LDLr−/−) mice. The elevated 26S proteasome activities were accompanied by ONOO−-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO−-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.

Journal ArticleDOI
TL;DR: Mechanisms that protect quiescent fibroblasts include autophagy/lysosomal pathways, diminished aggresome formation, and detoxification of reactive oxygen species.
Abstract: Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition–mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition–induced cytotoxicity.

Journal Article
Zhimei Gao1, Yayi Gao, Zhiyuan Li, Zuojia Chen, Daru Lu, Andy Tsun, Bin Li 
TL;DR: In this paper, the combination of transforming growth factor-beta (TGF-β) and IL-6 treatment (IL-6/TGFβ) can synergistically downregulate FOXP3 at the posttranslational level by promoting FoxP3 protein degradation.
Abstract: The forkhead family transcription factor FOXP3 is critical for the differentiation and function of CD4(+) CD25(+) regulatory T cells (Treg). How FOXP3 protein level is negatively regulated under the inflammatory microenvironment is largely unknown. Here we report that the combination of transforming growth factor-beta (TGF-β) and IL-6 treatment (IL-6/TGF-β) can synergistically downregulate FOXP3 at the posttranslational level by promoting FOXP3 protein degradation. In our FOXP3 overexpression model, we found that IL-6/TGF-β treatment upregulated IL-6R expression but did not affect the stability of FOXP3 mRNA. Moreover, we found that the proteasome inhibitor MG132 could inhibit IL-6/TGF-β-mediated downregulation of FOXP3 protein, which reveals a potential pathway for modulating Treg activity by preventing FOXP3 degradation during inflammation.

Proceedings ArticleDOI
TL;DR: In this paper, the effects of proteasome inhibition on glucocorticoid receptor-mediated gene transcription were explored using ChIP-Seq and microarray studies using breast cancer cells.
Abstract: Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL The ubiquitin-proteasome system (UPS) plays an integral role in controlling protein turnover to modulate cellular processes such as growth, proliferation, differentiation, and apoptosis. This occurs through multiple mechanisms that rely on the regulation of numerous transcription factors such as steroid hormone nuclear receptors. The glucocorticoid receptor (GR) is a member of this receptor family and its activation promotes nuclear translocation and downstream transcriptional activity through the recruitment of co-regulatory complexes. Our goal is to understand the mechanisms by which the proteasome regulates glucocorticoid receptor-mediated gene transcription. To explore the effects of proteasome inhibition upon GR-mediated transcription, we used ChIP-Seq and microarray studies using breast cancer cells to examine GR binding and gene expression profiles after treatment with dexamethasone (dex) or dex in combination with a proteasome inhibitor, MG132 (dex + mg), for 1 hour and 18 hours. More than 14000 and 5000 GR-binding sites were apparent after both treatments in the 1 hour and 18 hour samples, respectively. GR binding sites seen during 1 hour of treatment can be mapped to more than 9000 genes while the binding sites in the 18 hour treatment samples mapped to over 5000 genes. In addition, over 55% of binding sites in all treatment groups are within 50 kilobases of annotated transcription start sites. To verify these putative interactions, we assayed the transcript levels of genes at both time periods and examined the levels of bound GR throughout the gene. The results reveal a differential regulation of genes that can be divided into three classes: dex-responsive, dex + mg-responsive, or dually responsive. Further analyses will reveal if there are clearly defined chromatin states that demarcate each class. These data provide insights into the intricate mechanisms of proteasome-mediated GR regulation and highlight proteasomal-regulated genes involved in numerous diseases and developmental disorders. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3928. doi:1538-7445.AM2012-3928