scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: The isolation of OsiIAA1 cDNA, first monocot member of Aux/IAA gene family from rice, and transcript levels were down-regulated in etiolated rice coleoptiles irradiated with far-red, red and blue light suggest the existence of a cross-talk between auxin and light signaling, indicating that nuclear localization of OsIIAA 1 could be a prerequisite for its role in auxin signal transduction.

31 citations

Journal ArticleDOI
TL;DR: It is concluded that EGF regulates pax2 and GAPDH abundance and proteolysis through a PI3K/Akt-sensitive pathway that does not involve mTOR.
Abstract: EGF suppresses proteolysis via class 1 phosphatidylinositol 3-kinase (PI3K) in renal tubular cells. EGF also increases the abundance of glycolytic enzymes (e.g., glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) and transcription factors (e.g., pax2) that are degraded by the lysosomal pathway of chaperone-mediated autophagy. To determine if EGF regulates chaperone-mediated autophagy through PI3K signaling, this study examined the effect of inhibiting PI3K and its downstream mediators Akt and the mammalian target of rapamycin (mTOR). Inhibition of PI3K with LY294002 prevented EGF-induced increases in GAPDH and pax2 abundance in NRK-52E renal tubular cells. Similar results were seen with an adenovirus encoding a dominant negative Akt (DN Akt). Expression of a constitutively active Akt increased GAPDH and pax2 abundance. An mTOR inhibitor, rapamycin, did not prevent EGF-induced increases in these proteins. Neither DN Akt nor rapamycin alone had an effect on total cell protein degradation, but both partially reversed EGF-induced suppression of proteolysis. DN Akt no longer affected proteolysis after treatment with a lysosomal inhibitor, methylamine. In contrast, methylamine or the inhibitor of macroautophagy, 3-methyladenine, did not prevent rapamycin from partially reversing the effect of EGF on proteolysis. Notably, rapamycin did not increase autophagasomes detected by monodansylcadaverine staining. Blocking the proteasomal pathway with either MG132 or lactacystin prevented rapamycin from partially reversing the effect of EGF on proteolysis. It is concluded that EGF regulates pax2 and GAPDH abundance and proteolysis through a PI3K/Akt-sensitive pathway that does not involve mTOR. Rapamycin has a novel effect of regulating proteasomal proteolysis in cells that are stimulated with EGF.

31 citations

Journal ArticleDOI
TL;DR: This study provides the first example of the ability of hispolon to mediate MDM2 downregulation in lysosomes through the CMA pathway.

30 citations

Journal ArticleDOI
TL;DR: It is found that LRRK2 disrupted aggresome formation for autophagic clearance of accumulated protein aggregates, providing insight into the precise mechanisms that underlie autophagy dysregulation in the brains of patients with PD with L RRK2 mutations.

30 citations

Journal ArticleDOI
TL;DR: The results indicate that TF‐3 might exert chemopreventive effects through the downregulation of the EGFR, which is generally considered to be the more effective component for the inhibition of carcinogenesis.
Abstract: Black tea is one of the most popular beverages worldwide and especially in Western nations. Theaflavins, a mixture of theaflavin (TF-1), theaflavin-3-gallate (TF-2a), theaflavin-3'-gallate (TF-2b), and theaflavin-3,3'-digallate (TF-3) are the major components of black tea. Among these black tea components, theaflavin is generally considered to be the more effective component for the inhibition of carcinogenesis. Recently, TF-3 has been shown to have an antiproliferative effect on tumor cells, but the mechanism is not clear. In this study, we showed that TF-3-induced internalization and downregulation of the epidermal growth factor receptor (EGFR). These results suggested that TF-3 induces EGFR endocytosis and degradation. We further showed that TF-3 stimulated EGFR ubiquitination and tyrosine kinase activation. Interestingly, TF-3-induced EGFR downregulation is inhibited by the proteasome inhibitor, MG132, but not by the EGFR-specific receptor tyrosine kinase inhibitor, AG1478. Furthermore, pretreatment with TF-3 inhibited EGF-induced EGFR autophosphorylation, ERKs phosphorylation and AP-1 activation in JB6 Cl41 cells. In addition, TF-3 inhibited EGF-induced anchorage-independent cell transformation. Overall, our results indicate that TF-3 might exert chemopreventive effects through the downregulation of the EGFR.

30 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848