scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of ubiquitination in the degradation of CYP2E1 was examined in a Chinese hamster mutant cell line E36ts20 that contains a thermolabile ubiquitin-activating enzyme (E1) and the addition of the hsp90 inhibitors geldanamycin, herbimycin, and radicicol had no effect on the turnover of CYE1, differentiating the degraded from other substrates for proteasome-dependent degradation.

26 citations

Journal ArticleDOI
TL;DR: The results suggest that HSP90 cleavage by MG132 treatment is mediated by ROS generation and caspase 10 activation, which may provide an additional mechanism involved in the anti-cancer effects of proteasome inhibitors.
Abstract: Heat shock protein 90 (HSP90) is a molecular chaperone that supports the stability of client proteins. The proteasome is one of the targets for cancer therapy, and studies are underway to use proteasome inhibitors as anti-cancer drugs. In this study, we found that HSP90 was cleaved to a 55kDa protein after treatment with proteasome inhibitors including MG132 in leukemia cells but was not cleaved in other tissue-derived cells. HSP90 has two major isoforms (HSP90α and HSP90β), and both were cleaved by MG132 treatment. MG132 treatment also induced a decrease in HSP90 client proteins. MG132 treatment generated ROS, and the cleavage of HSP90 was blocked by a ROS scavenger, N-acetylcysteine (NAC). MG132 activated several caspases, and the activation was reduced by pretreatment with NAC. Based on an inhibitor study, the cleavage of HSP90 induced by MG132 was dependent on caspase 10 activation. Furthermore, active recombinant caspase 10 induced HSP90 cleavage in vitro. MG132 upregulated VDUP-1 expression and reduced the GSH levels implying that the regulation of redox-related proteins is involved. Taken all together, our results suggest that the cleavage of HSP90 by MG132 treatment is mediated by ROS generation and caspase 10 activation. HSP90 cleavage may provide an additional mechanism involved in the anti-cancer effects of proteasome inhibitors.

26 citations

Journal ArticleDOI
TL;DR: It is shown that detached Arabidopsis leaves rapidly and selectively degrade carbonylated proteins when kept in the dark, and it is postulate that disruption of cytokinin flux to detached leaves triggers the selective degradation of carbonylation proteins via the proteasome pathway.
Abstract: Under normal conditions, plants contain numerous carbonylated proteins, which are thought to be indicative of oxidative stress damage. Conditions that promote formation of reactive oxygen species (ROS) enhance protein carbonylation, and protein degradation is required to reverse the damage. However, it is not clear how the degradation of carbonylated proteins is controlled in planta. In this report, we show that detached Arabidopsis leaves rapidly and selectively degrade carbonylated proteins when kept in the dark. The loss of carbonylated proteins corresponded to a loss of soluble protein and accumulation of free amino acids. Degradation of carbonylated proteins and the loss of soluble protein was blocked by MG132 but not 3-methyladenine, suggesting that the 26S proteasome pathway rather than the autophagic pathway was involved. Consistent with this, rpn10 and rpn12 mutants, which are defective in proteasome function, had increased (rather than decreased) levels of carbonylated proteins when detached in the dark. Feeding metabolites (amino acids and sucrose) to detached leaves of wild-type Arabidopsis in the dark had little or no effect on the loss of carbonylated proteins, whereas providing soybean xylem sap via the transpiration stream effectively prevented degradation. The effect of xylem sap was mimicked by feeding 10 μM kinetin. We postulate that disruption of cytokinin flux to detached leaves triggers the selective degradation of carbonylated proteins via the proteasome pathway. The results may have implications for the control of protein mobilization in response to changes in N availability.

26 citations

Journal ArticleDOI
TL;DR: Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis.
Abstract: MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression

26 citations

Journal ArticleDOI
TL;DR: Even in genetically-modified mice with manifest HCM, proteasome inhibition showed beneficial effects, at least with regard to cardiac function, and Targeting the UPS in cardiac diseases remains therefore a therapeutic option.
Abstract: A growing line of evidence indicates a dysfunctional ubiquitin-proteasome system (UPS) in cardiac diseases. Anti-hypertrophic effects and improved cardiac function have been reported after treatment with proteasome inhibitors in experimental models of cardiac hypertrophy. Here we tested whether proteasome inhibition could also reverse the disease phenotype in a genetically-modified mouse model of hypertrophic cardiomyopathy (HCM), which carries a mutation in Mybpc3, encoding the myofilament protein cardiac myosin-binding protein C. At 7 weeks of age, homozygous mutant mice (KI) have 39% higher left ventricular mass-to-body-weight ratio and 29% lower fractional area shortening (FAS) than wild-type (WT) mice. Both groups were treated with epoxomicin (0.5 mg/kg/day) or vehicle for 1 week via osmotic minipumps. Epoxomicin inhibited the chymotrypsin-like activity by ~50% in both groups. All parameters of cardiac hypertrophy (including the fetal gene program) were not affected by epoxomicin treatment in both groups. In contrast, FAS was 12% and 35% higher in epoxomicin-treated than vehicle-treated WT and KI mice, respectively. To identify which genes or pathways could be involved in this positive effect, we performed a transcriptome analysis in KI and WT neonatal cardiac myocytes, treated or not with the proteasome inhibitor MG132 (1 μM, 24 h). This revealed 103 genes (four-fold difference; 5% FDR) which are commonly regulated in both KI and WT cardiac myocytes. Thus, even in genetically-modified mice with manifest HCM, proteasome inhibition showed beneficial effects, at least with regard to cardiac function. Targeting the UPS in cardiac diseases remains therefore a therapeutic option.

26 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848