scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that the NF-jB pathway is partiallyimplicated and its blockade attenuates but does not abrogate LPS-dependent IL-1b biosynthesis in alveolar epithelial cells.

25 citations

Journal ArticleDOI
TL;DR: It is suggested that a direct interaction between the 26S proteasome and a transit peptide is important for the degradation of unimported plastid protein precursors to maintain cellular homeostasis.
Abstract: The 26S proteasome is an ATP-dependent proteinase complex that is responsible for regulated proteolysis of polyubiquitinated proteins in eukaryotic cells. Here, we report novel 26S proteasome interacting proteins in Arabidopsis as revealed by LC–MS/MS analysis. We performed a two-step screening process that involved affinity purification of the 26S proteasome using Arabidopsis plants expressing a FLAG-tagged RPT2a subunit and partial purification of the 26S proteasome from cultured cells by glycerol density gradient centrifugation (GDG). Two plastid proteins, LTA2 and PDH E1α, which were commonly identified by both affinity purification and GDG, interacted with the 26S proteasome both in vitro and in vivo, and the transit peptides of LTA2 and PDH E1α were necessary for the interaction. Furthermore, the degradation of both LTA2 and PDH E1α was inhibited by MG132, a proteasome inhibitor. Similar to those two proteins, 26S proteasome subunits RPT2a/b and RPT5a interacted with the transit peptides of three ot...

25 citations

Journal ArticleDOI
TL;DR: The present data could provide useful information for MG132 action since nowadays proteasome inhibitors are entering into the swing of laboratory and clinical practice, and future in vivo experiments with MG132 could highlight the possibility of its use at different pathological conditions.
Abstract: In vivo effects of N-benzyloxycarbonyl (Cbz)-Leu–Leu-leucinal (MG132) on chymotryptic-like (ChT-L), tryptic-like, and post-glutamyl peptide hydrolytic-like proteasome activities, protein oxidation, lipid peroxidation (LP), glutathione (GSH) level, as well as on the activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-reductase) in the rat liver were studied. The possibility of MG132 provoking the formation of free oxygen radicals was also assayed in primary hepatocytes. The following results were obtained: (1) In vivo, MG132 did not change the spontaneous LP, but increased Fe-induced LP and the amount of oxidized proteins; it decreased the GSH level in liver. From the proteasome activities studied in liver cytosol only ChT-L activity was significantly decreased after MG132 administration. Furthermore, MG132 increased antioxidant enzyme activities of SOD, CAT, and GSH-Px. (2) In vitro, MG132 increased free radical oxygen species in hepatocytes; this effect disappeared in the presence of CAT or mannitol. In conclusion, since nowadays proteasome inhibitors are entering into the swing of laboratory and clinical practice, the present data could provide useful information for MG132 action. Consequently, future in vivo experiments with MG132 could highlight the possibility of its use at different pathological conditions. Copyright © 2008 John Wiley & Sons, Ltd.

25 citations

Journal ArticleDOI
TL;DR: It is demonstrated that soluble, but not insoluble nickel compound, is able to cause cyclin D1 degradation and a cell growth arrest in an IKKα‐dependent manner.
Abstract: It is well-known that insoluble nickel compounds possess much more potent carcinogenic activities as compared with soluble nickel compounds. Although it is assumed that the different entry and clearance rate are responsible for the difference, the mechanisms underlying the different carcinogenic activities are still not well understood yet. In the present study, we found that exposure to soluble, but not insoluble nickel compounds, caused a significant inhibition of cell growth and G1/G0 cell cycle arrest, which was concomitant with a marked down-regulation of cylin D1, an essential nuclear protein for controlling G1/S transition, while both soluble and insoluble nickel compounds showed similar effects on NFkappaB activation, HIF-1alpha protein accumulation and TNF-alpha transcription and CAP43 protein expression at same doses range. The down-regulation of cyclin D1 is due to protein degradation rather than inhibition of transcription, because the nickel compounds treatment did not change cyclin D1 mRNA level, while MG132, the proteasome inhibitor, can rescue the degradation of cyclin D1 caused by soluble nickel compound. Moreover, the soluble nickel-induced cyclin D1 degradation is dependent on its Thr286 residue and requires IKKalpha, but not HIF-1alpha, which are both reported to be involved in cyclin D1 down-regulation. Taken together, we demonstrate that soluble, but not insoluble nickel compound, is able to cause cyclin D1 degradation and a cell growth arrest in an IKKalpha-dependent manner. Given the role of cyclin D1 and cell proliferation in carcinogenesis, we anticipate that the different effects of soluble and insoluble nickel compounds on cyclin D1 degradation and cell growth arrest may at least partially account for their different carcinogenic activities.

25 citations

Journal ArticleDOI
TL;DR: It is shown that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-c cadherin or vimentin.
Abstract: Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis.

25 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848