scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: Results suggested that overexpression of integrin β1 inhibited cell proliferation by preventing the Skp2‐dependent degradation of p27Kip1 via PI3K pathway.
Abstract: Integrins may play important roles in many cellular events, such as cell proliferation, differentiation, and apoptosis. We showed previously that overexpression of integrin beta1 inhibits cell proliferation in SMMC-7721 cells. Here we reported that one of the cyclin-dependent kinase (CDK) inhibitors, p27(Kip1) was involved in proliferation-inhibition induced by overexpression of integrin beta1. Overexpression of integrin beta1 upregulated p27(Kip1) at the protein level, but not mRNA level. The knock-down of p27(Kip1) expression restored cell growth in integrin beta1-overexpressing cells. Cycloheximide (Chx) treatment and pulse-chase experiments revealed that overexpression of integrin beta1 prolonged the half-life of p27(Kip1) by inhibiting its degradation. Proteasome inhibitor (MG132) treatment of the cells indicated that proteasome mediated degradation of p27, and Skp2-dependent degradation might be prevented. Overexpression of integrin beta1 decreased Skp2 at mRNA level, which was regulated by cell adhesion and the subsequent adhesion-dependent signaling. Overexpression of integrin beta1 reduced cell adhesion, accordingly, inactivated the phosphoinositide 3-kinase (PI3K) signaling. PI3K inhibitor LY294002 upregulated p27(Kip1) at post-translational level and downregulate Skp2 at mRNA level, which could mimic the effects of integrin beta1 overexpression on p27(Kip1) and Skp2. Together, these results suggested that overexpression of integrin beta1 inhibited cell proliferation by preventing the Skp2-dependent degradation of p27(Kip1) via PI3K pathway.

24 citations

Journal ArticleDOI
TL;DR: Inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway, which is suggested to regulate cyclin-D1 turnover through phosphorylation and degradation.
Abstract: Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

24 citations

Journal ArticleDOI
TL;DR: Mild hyperthermia potently reduced cellular FLIP(long), (c-FLIPL), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis and supports the application ofhyperthermia combined with other regimens to treat colorectal hepatic metastases.
Abstract: Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIPL), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIPL in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIPL protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIPL was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIPL. These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIPL ubiquitination and proteolysis, as mutant c-FLIPL lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIPL by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

24 citations

Journal ArticleDOI
TL;DR: It is concluded that 26S proteasomes are mainly involved in the degradation of TPH, and a PEST sequence that is widely shared among short-lived proteins has been recognized.
Abstract: Previously we demonstrated that tryptophan hydroxylase (TPH) undergoes very fast turnover driven by ATP-dependent proteolysis in serotonin producing mast cells [Hasegawa et al. (1995) FEBS Lett. 368, 151-154]. We searched for the major proteases involved in the rapid degradation of TPH in RBL2H3 cells. Among various protease inhibitors tested, proteasome inhibitors MG115, MG101, MG132, and lactacystin effectively inhibited the intracellular degradation of TPH. Administration of the proteasome inhibitors to cultured cells caused more than a 5-fold accumulation of TPH. Administration of the inhibitors together with cycloheximide stabilized the amount of TPH with no appreciable increase or decrease. Although MG-series proteasome inhibitors could inhibit calpain, the involvement of calpain was excluded since the cysteine protease inhibitor E-64-d, which acts on calpain, had no effect. Extracts of RBL2H3 cells were shown to contain a protease that digests TPH in an ATP-dependent manner and is sensitive to proteasome inhibitors. The ubiquitination of TPH could be visualized by Western blot analysis using both anti-TPH and anti-ubiquitin antibodies. Based on these results, we conclude that 26S proteasomes are mainly involved in the degradation of TPH. In the reported amino acid sequences of TPH from various sources including human, rabbit, rat, and mouse, a PEST sequence that is widely shared among short-lived proteins has been recognized. It was noted that the PEST sequence lies within the most conserved portion of the enzyme, the pteridine binding site.

24 citations

Journal ArticleDOI
TL;DR: The present data demonstrate that oxidative modification by glutathiolation can render lens proteins more susceptible to degradation by the ubiquitin-proteasome pathway, and support the concept that the ubiqu itin- Proteasomesome pathway serves as a general protein quality-control mechanism.
Abstract: PURPOSE S-glutathiolated proteins are formed in the lens during aging and cataractogenesis. The objective of this work was to explore the role of the ubiquitin-proteasome pathway in eliminating S-glutathiolated gammaC-crystallin. METHODS Recombinant human gammaC-crystallin was mixed with various concentrations of glutathione (GSH) and diamide at 25 degrees C for 1 hour. The extent of glutathiolation of the gammaC-crystallin was determined by mass spectrometry. Native and S-glutathiolated gammaC-crystallins were labeled with (125)I, and proteolytic degradation was determined using both lens fiber lysate and reticulocyte lysate as sources of ubiquitinating and proteolytic enzymes. Far UV circular dichroism, tryptophan fluorescence intensity, and binding to the hydrophobic fluorescence probe 4,4'-dianilino-1,1'-binaphthalene-5,5'-disulfonic acid (Bis-ANS), were used to characterize the native and glutathiolated gammaC-crystallins. RESULTS On average, two and five of the eight cysteines in gammaC-crystallin were glutathiolated when molar ratios of gammaC-crystallin-GSH-diamide were 1:2:5 and 1:10:25, respectively. Native gammaC-crystallin was resistant to degradation in both lens fiber lysate and reticulocyte lysate. However, glutathiolated gammaC-crystallin showed a significant increase in proteolytic degradation in both lens fiber and reticulocyte lysates. Proteolysis was stimulated by addition of adenosine triphosphate (ATP) and Ubc4 and was substantially inhibited by the proteasome inhibitor MG132 and a dominant negative form of ubiquitin, indicating that at least part of the proteolysis was mediated by the ubiquitin-proteasome pathway. Spectroscopic analyses of glutathiolated gammaC-crystallin revealed conformational changes and partial unfolding, which may provide a signal for the ubiquitin-dependent degradation. CONCLUSIONS The present data demonstrate that oxidative modification by glutathiolation can render lens proteins more susceptible to degradation by the ubiquitin-proteasome pathway. Together with previous results, these data support the concept that the ubiquitin-proteasome pathway serves as a general protein quality-control mechanism.

24 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848