scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that proteasome inhibitor MG132 induces thyroid cancer cell apoptosis at least partially through modulating forkhead Box O3 activity.
Abstract: Proteasome inhibitors are promising antitumor drugs with preferable cytotoxicity in malignant cells and have exhibited clinical efficiency in several hematologic malignancies. P53-dependent apoptosis has been reported to be a major mechanism underlying. However, apoptosis can also be found in cancer cells with mutant-type p53, suggesting the involvement of p53-independent mechanism. Tumor suppressor forkhead Box O3 is another substrate of proteasomal degradation, which also functions partially through inducing apoptosis. The aim of this study was to explore the effect of proteasome inhibition on the expression and activity of forkhead Box O3 in thyroid cancer cells. Using flow cytometry, western blot, immunofluorescence staining and quantitative RT-PCR assays, we assessed proteasome inhibitor MG132-induced apoptosis in thyroid cancer cells and its effect on the expression and activity of forkhead Box O3. The resulted showed that MG132 induced significant apoptosis, and caused the accumulation of p53 protein in both p53 wild-type and mutant-type thyroid cancer cell lines, whereas the proapoptotic targets of p53 were transcriptionally upregulated only in the p53 wild-type cells. Strikingly, upon MG132 administration, the accumulation and nuclear translocation of transcription factor forkhead Box O3 as well as transcriptional upregulation of its proapoptotic target genes were found in thyroid cancer cells regardless of p53 status. Cell apoptosis was enhanced by ectopic overexpression while attenuated by silencing of forkhead Box O3. Altogether, we demonstrated that proteasome inhibitor MG132 induces thyroid cancer cell apoptosis at least partially through modulating forkhead Box O3 activity.

18 citations

Journal ArticleDOI
01 Feb 2008-RNA
TL;DR: The results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of e RF3a controls translation termination complex formation by adjusting the eRF 3a level to that of eRF 1.
Abstract: In eukaryotes, eRF1 and eRF3 are associated in a complex that mediates translation termination. The regulation of the formation of this complex in vivo is far from being understood. In mammalian cells, depletion of eRF3a causes a reduction of eRF1 level by decreasing its stability. Here, we investigate the status of eRF3a when not associated with eRF1. We show that eRF3a forms altered in their eRF1-binding site have a decreased stability, which increases upon cell treatment with the proteasome inhibitor MG132. We also show that eRF3a forms altered in eRF1 binding as well as wild-type eRF3a are polyubiquitinated. These results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of eRF3a controls translation termination complex formation by adjusting the eRF3a level to that of eRF1.

18 citations

Journal ArticleDOI
TL;DR: It is suggested that non-muscle myosin II is involved in the retrograde trafficking of NR1 subunits from the cis/middle-Golgi to the endoplasmic reticulum for proteasomal degradation in PC12.

18 citations

Journal ArticleDOI
TL;DR: The results suggest that the BI-1-mediated enhancement of lysosomal activity regulates P450 2E1 expression and resultant ROS accumulation.

18 citations

Journal ArticleDOI
TL;DR: It is concluded that decreased phosphorylation and increased levels of Bim overcome the prosurvival effect of the D816V mutation and that the results warrant further investigations of the clinical effects of proteasomal inhibition in systemic mastocytosis.
Abstract: The majority of patients with systemic mastocytosis exhibit a D816V mutation in the activating loop of the Kit receptor expressed on mast cells. The Kit ligand regulates mast cell survival by transcriptional repression of the proapoptotic BH3-only protein Bim and by promoting Bim phosphorylation that makes it vulnerable for proteasomal-dependent degradation. We investigated here whether prevention of Bim degradation by a proteasomal inhibitor, MG132, would induce apoptosis in mast cells with the D816V mutation. Human umbilical cord blood-derived mast cells (CBMCs) with wild-type (wt) Kit and two different subclones of the human mast cell line-1 (HMC-1) were used for the study: HMC-1.1 with the V560G mutation in the juxtamembrane domain and HMC-1.2 carrying the V560G mutation together with the D816V mutation. MG132 at 1 μM induced apoptosis in all cell types, an effect accompanied by increased BH3-only proapoptotic protein Bim. The raise of Bim was accompanied by caspase-3 activation, and a caspase-3 inhibitor reduced MG132-induced apoptosis. Further, MG132 caused a reduction of activated Erk, a negative regulator of Bim expression, and thus Bim upregulation. We conclude that decreased phosphorylation and increased levels of Bim overcome the prosurvival effect of the D816V mutation and that the results warrant further investigations of the clinical effects of proteasomal inhibition in systemic mastocytosis.

18 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848