scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that IGF-I can cause ligand-mediated degradation of IRS-1 via the ubiquitin-mediated 26S proteasome and a phosphatidylinositol 3′-kinase-dependent mechanism and that control of degradation may have profound effects on downstream activation of signaling pathways.
Abstract: Insulin receptor substrate 1 (IRS-1) is a critical adapter protein involved in both insulin and insulin-like growth factor (IGF) signaling. Due to the fact that alteration of IRS-1 levels can affect the sensitivity and response to both insulin and IGF-I, we examined the ability of each of these ligands to affect IRS-1 expression. IGF-I (10 nM) stimulation of MCF-7 breast cancer cells caused a transient tyrosine phosphorylation of IRS-1 that was maximal at 15 min and decreased thereafter. The decrease in tyrosine phosphorylation of IRS-1 was paralleled by an apparent decrease in IRS-1 levels. The IGF-mediated decrease in IRS-1 expression was posttranscriptional and due to a decrease in the half-life of the IRS-1 protein. Insulin (10 nM) caused tyrosine phosphorylation of IRS-1 but not degradation, whereas high concentrations of insulin (10 microM) resulted in degradation of IRS-1. IGF-I (10 nM) stimulation resulted in transient IRS-1 phosphorylation and extracellular signal-related kinase (ERK) activation. In contrast, insulin (10 nM) caused sustained IRS-1 phosphorylation and ERK activation. Inhibition of 26S proteasome activity by the use of lactacystin or MG132 completely blocked IGF-mediated degradation of IRS-1. Furthermore, coimmunoprecipitation experiments showed an association between ubiquitin and IRS-1 that was increased by treatment of cells with IGF-I. Finally, IGF-mediated degradation of IRS-1 was blocked by inhibition of phosphatidylinositol 3'-kinase activity but was not affected by inhibition of ERK, suggesting that this may represent a direct negative-feedback mechanism resulting from downstream IRS-1 signaling. We conclude that IGF-I can cause ligand-mediated degradation of IRS-1 via the ubiquitin-mediated 26S proteasome and a phosphatidylinositol 3'-kinase-dependent mechanism and that control of degradation may have profound effects on downstream activation of signaling pathways.

134 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms underlying the antiproliferative effects of GTP may be similar to those of histone deacetylase (HDAC) inhibitors and a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition is suggested.
Abstract: Green tea polyphenols (GTPs) reactivate epigenetically silenced genes in cancer cells and trigger cell cycle arrest and apoptosis; however, the mechanisms whereby these effects occur are not well understood. We investigated the molecular mechanisms underlying the antiproliferative effects of GTP, which may be similar to those of histone deacetylase (HDAC) inhibitors. Exposure of human prostate cancer LNCaP cells (harboring wild-type p53) and PC-3 cells (lacking p53) with 10–80 μg/ml of GTP for 24 h resulted in dose-dependent inhibition of class I HDAC enzyme activity and its protein expression. GTP treatment causes an accumulation of acetylated histone H3 in total cellular chromatin, resulting in increased accessibility to bind with the promoter sequences of p21/waf1 and Bax, consistent with the effects elicited by an HDAC inhibitor, trichostatin A. GTP treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. Furthermore, treatment of cells with proteasome inhibitor, MG132 together with GTP prevented degradation of class I HDACs, compared with cells treated with GTP alone, indicating increased proteasomal degradation of class I HDACs by GTP. These alterations were consistent with G0–G1 phase cell cycle arrest and induction of apoptosis in both cell lines. Our findings provide new insight into the mechanisms of GTP action in human prostate cancer cells irrespective of their p53 status and suggest a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition.

133 citations

Journal ArticleDOI
TL;DR: It is demonstrated that PPARα is degraded by the ubiquitin-proteasome system in a ligand-dependent manner and Regulation of its degradation provides a novel regulatory mechanism of transcriptional activity of this nuclear receptor.

133 citations

Journal ArticleDOI
01 Aug 2009-Diabetes
TL;DR: It is concluded that AMPK activation normalizes vascular endothelial function by suppressing 26S proteasome-mediated GTPCH I degradation in diabetes.
Abstract: OBJECTIVE The activation of AMP-activated protein kinase (AMPK) has been reported to improve endothelial function. However, the targets of AMPK in endothelial cells remain poorly defined. The aim of this study was to test whether AMPK suppresses the degradation of GTP-cyclohydrolase (GTPCH I), a key event in vascular endothelial dysfunction in diabetes. RESEARCH DESIGN AND METHODS Both human umbilical vein endothelial cells and aortas isolated from streptozotocin-injected diabetic mice were assayed for phospho-AMPK (Thr172), GTPCH I, tetrahydrobiopterin (BH4), and endothelial functions. RESULTS Oral administration of metformin (300 mg · kg −1 · day −1 , 4 weeks) in streptozotocin-injected mice significantly blunted the diabetes-induced reduction of AMPK phosphorylation at Thr172. Metformin treatment also normalized acetylcholine-induced endothelial relaxation and increased the levels of GTPCH I and BH4. The administration of AICAR, an AMPK activator, or adenoviral overexpression of a constitutively active mutant of AMPK abolished the high-glucose–induced (30 mmol/l) reduction of GTPCH I, biopeterins, and BH4 but had no effect on GTPCH I mRNA. Furthermore, AICAR or overexpression of AMPK inhibited the high-glucose–enhanced 26S proteasome activity. Consistently, inhibition of the proteasome by MG132 abolished high-glucose–induced reduction of GTPCH I in human umbilical vein endothelial cells. Further, aortas isolated from AMPKα2 −/− mice, which exhibited elevated 26S proteasome activity, had reduced levels of GTPCH I and BH4. Finally, either administration of MG132 or supplementation of l-sepiapterin normalized the impaired endothelium-dependent relaxation in aortas isolated from AMPKα2 −/− mice. CONCLUSIONS We conclude that AMPK activation normalizes vascular endothelial function by suppressing 26S proteasome-mediated GTPCH I degradation in diabetes.

133 citations

Journal ArticleDOI
TL;DR: It is shown that receptor levels are dependent upon cellular compartmentalization, with entry into the nucleus leading to the rapid destruction of the DR, and a novel mechanism of proteolysis whereby the simple relocation of a transcription factor from cytoplasm to nucleus initiates its rapid destruction.

131 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848