scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal Article
TL;DR: It is shown that inhibition of proteasomes by two specific agents, lactacystin or MG132, prevents all manifestations of thymocyte apoptosis induced by the glucocorticoid receptor agonist dexamethasone or by the topoisomerase II inhibitor etoposide.
Abstract: Proteasomes and mitochondrial membrane changes are involved in thymocyte apoptosis. The hierarchical relationship between protease activation and mitochondrial alterations has been elusive. Here we show that inhibition of proteasomes by two specific agents, lactacystin or MG132, prevents all manifestations of thymocyte apoptosis induced by the glucocorticoid receptor agonist dexamethasone or by the topoisomerase II inhibitor etoposide. Lactacystin and MG132 prevent the early disruption of the mitochondrial transmembrane potential (ΔΨ m ), which precedes caspase activation, exposure of phosphatidylserine, and nuclear DNA fragmentation. In contrast, stabilization of the ΔΨ m using the permeability transition pore inhibitor bongkrekic acid or inhibition of caspases by N -benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone does not prevent the activation of proteasomes, as determined with the fluorogenic substrate N -succinyl-l-leucyl-l-leucyl-l-valyl-l-tyrosine-7-amido-4-methylcoumarin. Thus, proteasome activation occurs upstream from mitochondrial changes and caspase activation. Whereas the proteasome-specific agents lactacystin and MG132 truly maintain thymocyte viability, a number of protease inhibitors that inhibit nuclear DNA fragmentation (acetyl-Asp-Glu-Val-Asp-fluoromethylketone; N- Boc-Asp(OMe)-fluoromethylketone; N- tosyl-l-Phe-chloromethylketone) do not prevent the cytolysis induced by DEX or etoposide. These latter agents fail to interfere with the preapoptotic ΔΨ m disruption. Altogether, our data indicate that different proteases may be involved in the pre- or postmitochondrial phase of apoptosis. Only those protease inhibitors that interrupt the apoptotic process at the premitochondrial stage can actually preserve cell viability.

92 citations

Journal ArticleDOI
TL;DR: It is demonstrated how mahanine, a plant-derived carbazole alkaloid, restores RASSF1A expression by down-regulating specific members of the DNMT family of proteins in prostate cancer cells by induces the proteasomal degradation of DNMT1 and DNMT3B via the inactivation of Akt.
Abstract: Hypermethylation of the promoter of the tumor suppressor gene RASSF1A silences its expression and has been found to be associated with advanced grade prostatic tumors. The DNA methyltransferase (DNMT) family of enzymes are known to be involved in the epigenetic silencing of gene expression, including RASSF1A, and are often overexpressed in prostate cancer. The present study demonstrates how mahanine, a plant-derived carbazole alkaloid, restores RASSF1A expression by down-regulating specific members of the DNMT family of proteins in prostate cancer cells. Using methylation-specific PCR we establish that mahanine restores the expression of RASSF1A by inducing the demethylation of its promoter in prostate cancer cells. Furthermore, we show that mahanine treatment induces the degradation of DNMT1 and DNMT3B, but not DNMT3A, via the ubiquitin-proteasome pathway; an effect which is rescued in the presence of a proteasome inhibitor, MG132. The inactivation of Akt by wortmannin, a PI3K inhibitor, results in a similar down-regulation in the levels DNMT1 and DNMT3B. Mahanine treatment results in a decline in phospho-Akt levels and a disruption in the interaction of Akt with DNMT1 and DNMT3B. Conversely, the exogenous expression of constitutively active Akt inhibits the ability of mahanine to down-regulate these DNMTs, suggesting that the degradation of DNMT1 and DNMT3B by mahanine occurs via Akt inactivation. Taken together, we show that mahanine treatment induces the proteasomal degradation of DNMT1 and DNMT3B via the inactivation of Akt, which facilitates the demethylation of the RASSF1A promoter and restores its expression in prostate cancer cells. Therefore, mahanine could be a potential therapeutic agent for advanced prostate cancer in men when RASSF1A expression is silenced.

91 citations

Journal ArticleDOI
TL;DR: The role of c‐Jun NH2‐terminal kinase (JNK) signaling cascade in the stress‐inducible phosphorylation of heat shock factor 1 (HSF1) was investigated and it was shown that treatment of HeLa cells with MG132 caused the transcriptional activation domain of HSF1 to be targeted and phosphorylated by JNK2 in vivo.
Abstract: The role of c-Jun NH2-terminal kinase (JNK) signaling cascade in the stress-inducible phosphorylation of heat shock factor 1 (HSF1) was investigated using known agonists and antagonists of JNK. We showed that treatment of HeLa cells with MG132, a proteasome inhibitor and known INK activator, caused the transcriptional activation domain of HSF1 to be targeted and phosphorylated by JNK2 in vivo. Dose-response and time course studies of the effects of heat shock and anisomycin treatment showed a close correlation of the activation of JNK and hyperphosphorylation of HSF1. SB203580 inhibited INK at the 100 microM concentration and significantly reduced the amount of hyperphosphorylated HSF1 upon heat shock or anisomycin treatment. SB203580 and dominant-negative JNK suppress hsp70 promoter-driven reporter gene expression selectively at 45 degrees C but not at 42 degrees C heat stress, suggesting that JNK would be preferentially associated with the protective heat shock response against severe heat stress. The possibility that JNK-mediated phosphorylation of HSF1 may selectively stabilize the HSF1 protein and confers protection to cells under conditions of severe stress is discussed.

91 citations

Journal ArticleDOI
TL;DR: It is discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1), which is known to mediate the nuclear import of ISGF3 and correlates with the inhibition of IFN-mediated signaling.
Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the interferon-mediated antiviral response. Type I interferons (IFNs) induce the expression of IFN-stimulated genes by activating phosphorylation of both signal transducer and activator of transcription 1 (STAT1) and STAT2, which form heterotrimers (interferon-stimulated gene factor 3 [ISGF3]) with interferon regulatory factor 9 (IRF9) and translocate to the nucleus. PRRSV Nsp1β blocks the nuclear translocation of the ISGF3 complex by an unknown mechanism. In this study, we discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1, also called importin-α5), which is known to mediate the nuclear import of ISGF3. Overexpression of Nsp1β resulted in a reduction of KPNA1 levels in a dose-dependent manner, and treatment of the cells with the proteasome inhibitor MG132 restored KPNA1 levels. Furthermore, the presence of Nsp1β induced an elevation of KPNA1 ubiquitination and a shortening of its half-life. Our analysis of Nsp1β deletion constructs showed that the N-terminal domain of Nsp1β was involved in the ubiquitin-proteasomal degradation of KPNA1. A nucleotide substitution resulting in an amino acid change from valine to isoleucine at residue 19 of Nsp1β diminished its ability to induce KPNA1 degradation and to inhibit IFN-mediated signaling. Interestingly, infection of MARC-145 cells by PRRSV strains VR-2332 and VR-2385 also resulted in KPNA1 reduction, whereas infection by an avirulent strain, Ingelvac PRRS modified live virus (MLV), did not. MLV Nsp1β had no effect on KPNA1; however, a mutant with an amino acid change at residue 19 from isoleucine to valine induced KPNA1 degradation. These results indicate that Nsp1β blocks ISGF3 nuclear translocation by inducing KPNA1 degradation and that valine-19 in Nsp1β correlates with the inhibition.

91 citations

Journal ArticleDOI
TL;DR: Data from the B641 analyses that showIRF3 degradation is dependent on the presence of NSP1 and the integrity of the N-terminal zinc-binding domain, coupled with the regulated stability of IRF3 and NSP 1 by the proteasome, collectively support the hypothesis that N SP1 is an E3 ubiquitin ligase.
Abstract: Interferon regulatory factor 3 (IRF3) is a key transcription factor involved in the induction of interferon (IFN) in response to viral infection. Rotavirus non-structural protein NSP1 binds to and targets IRF3 for proteasome degradation early post-infection. Mutational analysis of cysteine and histidine residues within the conserved N-terminal zinc-binding domain in NSP1 of bovine rotavirus strain B641 abolished IRF3 degradation in transfected cells. Thus, the integrity of the zinc-binding domain in NSP1 is important for degradation of IRF3. In contrast to bovine strain B641, IRF3 was stable in cells infected with porcine rotavirus strain OSU and OSU NSP1 bound only weakly to IRF3. Both B641 NSP1 and OSU NSP1 were stabilized in cells or cell-free extracts in the presence of the proteasome inhibitor MG132 and when the zinc-binding domain was disrupted by site-directed mutagenesis. Data from the B641 analyses that show IRF3 degradation is dependent on the presence of NSP1 and the integrity of the N-terminal zinc-binding domain, coupled with the regulated stability of IRF3 and NSP1 by the proteasome, collectively support the hypothesis that NSP1 is an E3 ubiquitin ligase.

91 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848