scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: The data presented herein demonstrate that CYP1B1 is targeted for its polymorphism-dependent degradation by polyubiquitination but not phosphorylation, and provides a mechanism to explain the recently reported lower incidence of endometrial cancer in individuals carrying the CYP 1B1*4 compared with the CyP1 B1*1 haplo-type.
Abstract: Allelic variations in CYP1B1 are reported to modulate the incidence of several types of cancer. To provide a mechanistic basis for this association, we investigated the impact of nonsilent allelic changes on the intracellular levels and post-translational regulation of CYP1B1 protein. When transiently expressed in COS-1 cells, either in the presence or absence of recombinant cytochrome P450 reductase, the cellular level of the CYP1B1.4 allelic variant (containing a Ser at the amino acid position 453; Ser453) was 2-fold lower compared with the other four allelic CYP1B1 proteins (containing Asn453), as analyzed by both immunoblotting and ethoxyresorufin O-deethylase activity. This difference was caused by post-translational regulation; as in the presence of cycloheximide, the rate of degradation of immunodetectable and enzymatically active CYP1B1.4 was distinctly faster than that of CYP1B1.1. Pulse-chase analysis revealed that the half-life of CYP1B1.4 was a mere 1.6 h compared with 4.8 h for CYP1B1.1. The presence of the proteasome inhibitor MG132 [N-benzoyloxycarbonyl (Z)-Leu-Leuleucinal] increased the stability not only of immunodetectable CYP1B1, but also--unexpectedly given the size of the proteasome access channel--increased the stability of enzymatically active CYP1B1. The data presented herein also demonstrate that CYP1B1 is targeted for its polymorphism-dependent degradation by polyubiquitination but not phosphorylation. Our results importantly provide a mechanism to explain the recently reported lower incidence of endometrial cancer in individuals carrying the CYP1B1*4 compared with the CYP1B1*1 haplo-type. In addition, the mechanistic paradigms revealed herein may explain the strong overexpression of CYP1B1 in tumors compared with nondiseased tissues.

88 citations

Journal ArticleDOI
TL;DR: The data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB–dependent gene expression by bortzomib is gene specific and depends on the subunit composition of NF -κB dimers recruited to NF- κB–responsive promoters.
Abstract: Cutaneous T cell lymphoma (CTCL) is characterized by constitutive activation of NFκB, which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NFκB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NFκB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NFκB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα, which then associates with NFκB p65 and p50 in the nucleus and inhibits NFκB DNA binding activity. Surprisingly, however, while expression of NFκB-dependent anti-apoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NFκB p65/50 heterodimers, while Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NFκB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NFκB dimers recruited to NFκB-responsive promoters.

88 citations

Journal ArticleDOI
TL;DR: Clear evidences are provided that degradation of SMN protein is mediated via the ubiquitin/proteasome pathway and suggest that proteasome inhibitors may up-regulate SMNprotein level and may be useful for the treatment of SMA.

88 citations

Journal ArticleDOI
TL;DR: The results suggest that the p53 proteins accumulating in the nucleus following UV-irradiation or blockage of transcription are freely soluble and, thus, should be able to roam the nucleus to ensure high occupancy of p53 binding sites.
Abstract: The tumor suppressor p53 is a nucleocytoplasmic shuttling protein that accumulates in the nucleus of cells exposed to various cellular stresses. One important role of nuclear p53 is to mobilize a stress response by transactivating target genes such as the p21(Waf1) gene. In this study, we investigated more closely the localization of p53 in cells following various stresses. Immunocytochemistry of fixed human fibroblasts treated with either UV light, the kinase and transcription inhibitor DRB or the proteasome inhibitor MG132 revealed abundant p53 localized to the nucleus. When cells treated with UV or DRB were permeabilized prior to fixation to allow soluble proteins to diffuse, the nuclear p53 signal was abolished. However, in cells treated with MG132, residual p53 localized to distinct large foci. Furthermore, nucleolin co-localized with p53 to these foci, suggesting that these foci were nucleolar structures. Interestingly, the MDM2 protein was found to co-localize with p53 to nucleolar structures following proteasome inhibition. Our results suggest that the p53 proteins accumulating in the nucleus following UV-irradiation or blockage of transcription are freely soluble and, thus, should be able to roam the nucleus to ensure high occupancy of p53 binding sites. However, inhibition of proteasome activity may be a unique stress in that it leads to the sequestering of p53 proteins to the nucleolus, thereby blunting the p53-mediated transactivation of target genes.

87 citations

Journal ArticleDOI
TL;DR: It is suggested that ROS production by proteasome inhibitors leads to AP‐1 activation, which in the absence of NF‐κB activation still transactivates IL‐8 gene expression.

87 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848