scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: Four compounds designed and synthesized based on MG132, a potent but nonspecific 20 S proteasome inhibitor, are considered as promising leads for anti-tumor drug development and induced apoptosis in HeLa cells.

70 citations

Journal ArticleDOI
01 Jan 2006-Leukemia
TL;DR: The concept that loss of SHP1 contributes to the constitutive activation of JAK3/STAT3 in ALK+ ALCL cells is supported.
Abstract: Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALK+ ALCL) is characterized by constitutive activation of the Janus kinase (JAK)3/signal transducers and activators of transcription 3 (STAT3) signaling pathway. SHP1, a tyrosine phosphatase that negatively regulates JAK/STAT, is frequently absent in ALK+ ALCL owing to gene methylation. To test the hypothesis that loss of SHP1 contributes to JAK3/STAT3 activation in ALK+ ALCL cells, we induced SHP1 expression using 5-aza-2'-deoxycytidine (5-AZA), an inhibitor of DNA methyltransferase, in ALK+ ALCL cell lines, and correlated with changes in the JAK3/STAT3 pathway. 5-AZA gradually restored SHP1 expression in Karpas 299 and SU-DHL-1 cells over 5 days. The initially low level of SHP1 expression did not result in significant changes to the expression or tyrosine phosphorylation of JAK3 and STAT3. However, higher levels of SHP1 seen subsequently correlated with substantial decreases in JAK3 and pJAK3, followed by pSTAT3 (but not STAT3). Importantly, the decrease in JAK3 was abrogated by MG132, a proteasome inhibitor. 5-AZA induced no significant increase in apoptosis but it sensitized ALCL cells to doxorubicin-induced apoptosis. Our findings support the concept that loss of SHP1 contributes to the constitutive activation of JAK3/STAT3 in ALK+ ALCL cells. SHP1 appears to downregulate JAK3 by two mechanisms: tyrosine dephosphorylation and increased degradation via the proteasome pathway.

70 citations

Journal Article
TL;DR: These findings demonstrate that the E 6-induced decrease in the levels of E6TP1 protein involves the E6AP-mediated ubiquitination followed by proteasome-dependent degradation.
Abstract: High-risk human papilloma viruses are known to be associated with cervical cancers. We have reported previously that the high-risk human papillomavirus (HPV) E6 oncoprotein interacts with E6TP1, a novel Rap GTPase-activating protein (RapGAP). Similar to p53 tumor suppressor protein, the high-risk HPV E6 oncoproteins target E6TP1 for degradation. The HPV16 E6-induced degradation of E6TP1 strongly correlates with its ability to immortalize human mammary epithelial cells. In this study, we used treatment with a proteasome inhibitor MG132, analysis in CHO-ts20 cells with a thermolabile ubiquitin-activating enzyme, and direct detection of ubiquitin-modified E6TP1 to demonstrate that E6TP1 is targeted for degradation by the ubiquitin-proteasome pathway both in the presence and in the absence of E6. Using deletion mutants of E6TP1, we mapped the region required and sufficient for E6 binding to COOH-terminal 40 amino acid residues and showed this region to be necessary for E6-dependent degradation of E6TP1. Furthermore, the E6-binding region of E6TP1 complexes with E6AP via E6. Importantly, the purified E6AP enhanced the ubiquitination and degradation of E6TP1 in the presence of E6 in vitro. Additionally, the expression of a dominant-negative E6AP mutant (C833A) in cells inhibited the E6-induced degradation of E6TP1. These findings demonstrate that the E6-induced decrease in the levels of E6TP1 protein involves the E6AP-mediated ubiquitination followed by proteasome-dependent degradation.

69 citations

Journal ArticleDOI
01 Sep 2015-eLife
TL;DR: Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival, and this means of rebalancing proteostasis is conserved from yeast to humans.
Abstract: Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.

69 citations

Journal ArticleDOI
TL;DR: It is demonstrated that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation, and targeted CD1D toward two distinct proteolytic pathways.

69 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848