scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that MDM2 directly inhibits p21waf1/cip1 function by reducing p21 waf1 / cip1 stability in a ubiquitin‐independent fashion.
Abstract: The CDK inhibitor p21waf1/cip1 is degraded by a ubiquitin-independent proteolytic pathway. Here, we show that MDM2 mediates this degradation process. Overexpression of wild-type or ring finger-deleted, but not nuclear localization signal (NLS)-deleted, MDM2 decreased p21waf1/cip1 levels without ubiquitylating this protein and affecting its mRNA level in p53–/– cells. This decrease was reversed by the proteasome inhibitors MG132 and lactacystin, by p19arf, and by small interfering RNA (siRNA) against MDM2. p21waf1/cip1 bound to MDM2 in vitro and in cells. The p21waf1/cip1-binding-defective mutant of MDM2 was unable to degrade p21waf1/cip1. MDM2 shortened the half-life of both exogenous and endogenous p21waf1/cip1 by 50% and led to the degradation of its lysine-free mutant. Consequently, MDM2 suppressed p21waf1/cip1-induced cell growth arrest of human p53–/– and p53–/–/Rb–/–cells. These results demonstrate that MDM2 directly inhibits p21waf1/cip1 function by reducing p21waf1/cip1 stability in a ubiquitin-independent fashion.

205 citations

Journal Article
TL;DR: The results suggest that CPT-induced down-regulation of TOP1 could be an important parameter for determining CPT sensitivity/resistance in tumor cells.
Abstract: Camptothecin (CPT) induces down-regulation of topoisomerase I (TOP1) via an ubiquitin/26S proteasome pathway. Studies using a panel of breast and colorectal cancer cell lines as well as primary nontransformed and oncogene-transformed cells have demonstrated that CPT-induced down-regulation exhibits a high degree of heterogeneity. In general, nontransformed cells are much more proficient in CPT-induced TOP1 down-regulation than their transformed counterparts. Among the breast and colorectal cancer cell lines, there was a general correlation between the extent of CPT-induced TOP1 down-regulation and CPT resistance. The breast cancer cell line ZR-75-1, the most sensitive to CPT, was completely defective in CPT-induced TOP1 down-regulation, whereas the breast cancer cell line BT474, the least sensitive to CPT, exhibited effective CPT-induced TOP1 down-regulation. The 26S proteasome inhibitor MG132 was shown to inhibit CPT-induced down-regulation of TOP1 in BT474 cells and selectively sensitized BT474 but not ZR-75-1 cells to CPT-induced cytotoxicity and apoptosis. In the aggregate, these results suggest that CPT-induced down-regulation of TOP1 could be an important parameter for determining CPT sensitivity/resistance in tumor cells. Analysis of the levels of TOP1 cleavable complexes, SUMO-1-TOP1 conjugates, and ubiquitin-TOP1 conjugates in ZR-75-1 and BT474 cells has suggested that the heterogeneity of CPT-induced down-regulation of TOP1 in tumor cells is at least in part attributable to altered regulation of a process(es) downstream from the TOP1 cleavable complex.

204 citations

Journal ArticleDOI
TL;DR: The study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.
Abstract: Mutations in DJ-1 lead to early onset Parkinson's disease (PD). The aim of this study was to elucidate further the underlying mechanisms leading to neuronal cell death in DJ-1 deficiency in vivo and determine whether the observed cell loss could be prevented pharmacologically. Inactivation of DJ-1 in zebrafish, Danio rerio, resulted in loss of dopaminergic neurons after exposure to hydrogen peroxide and the proteasome inhibitor MG132. DJ-1 knockdown by itself already resulted in increased p53 and Bax expression levels prior to toxin exposure without marked neuronal cell death, suggesting subthreshold activation of cell death pathways in DJ-1 deficiency. Proteasome inhibition led to a further increase of p53 and Bax expression with widespread neuronal cell death. Pharmacological p53 inhibition either before or during MG132 exposure in vivo prevented dopaminergic neuronal cell death in both cases. Simultaneous knockdown of DJ-1 and the negative p53 regulator mdm2 led to dopaminergic neuronal cell death even without toxin exposure, further implicating involvement of p53 in DJ-1 deficiency-mediated neuronal cell loss. Our study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.

203 citations

Journal ArticleDOI
TL;DR: It is suggested that wild-type NQO1 persists in cells whereas mutant NZO1 is rapidly degraded via ubiquitination and proteasome degradation.
Abstract: The NAD(P)H:quinone oxidoreductase 1 (NQO1)*2 polymorphism is characterized by a single proline-to-serine amino acid substitution. Cell lines and tissues from organisms genotyped as homozygous for the NQO1*2 polymorphism are deficient in NQO1 activity. In studies with cells homozygous for the wild-type allele and cells homozygous for the mutant NQO1*2 allele, no difference in the half-life of NQO1 mRNA transcripts was observed. Similarly, in vitro transcription/translation studies showed that both wild-type and mutant NQO1 coding regions were transcribed and translated into full-length protein with equal efficiency. Protein turnover studies in NQO1 wild-type and mutant cell lines demonstrated that the half-life of wild-type NQO1 was greater than 18 h, whereas the half-life of mutant NQO1 was 1.2 h. Incubation of NQO1 mutant cell lines with proteasome inhibitors increased the amount of immunoreactive NQO1 protein, suggesting that mutant protein may be degraded via the proteasome pathway. Additional studies were performed using purified recombinant NQO1 wild-type and mutant proteins incubated in a rabbit reticulocyte lysate system. In these studies, no degradation of wild-type NQO1 protein was observed; however, mutant NQO1 protein was completely degraded in 2 h. Degradation of mutant NQO1 was inhibited by proteasome inhibitors and was ATP-dependent. Mutant NQO1 incubated in rabbit reticulocyte lysate with MG132 resulted in the accumulation of proteins with increased molecular masses that were immunoreactive for both NQO1 and ubiquitin. These data suggest that wild-type NQO1 persists in cells whereas mutant NQO1 is rapidly degraded via ubiquitination and proteasome degradation.

203 citations

Journal ArticleDOI
TL;DR: It is demonstrated that pretreatment of primary and Bac1 murine macrophages with TLR agonists is required for caspase-1 activation by P2X7R but it is not required for activation of the receptor itself.
Abstract: The proinflammatory cytokines IL-1β and IL-18 are inactive until cleaved by the enzyme caspase-1. Stimulation of the P2X7 receptor (P2X7R), an ATP-gated ion channel, triggers rapid activation of caspase-1. In this study we demonstrate that pretreatment of primary and Bac1 murine macrophages with TLR agonists is required for caspase-1 activation by P2X7R but it is not required for activation of the receptor itself. Caspase-1 activation by nigericin, a K + /H + ionophore, similarly requires LPS priming. This priming by LPS is dependent on protein synthesis, given that cyclohexamide blocks the ability of LPS to prime macrophages for activation of caspase-1 by the P2X7R. This protein synthesis is likely mediated by NF-κB, as pretreatment of cells with the proteasome inhibitor MG132, or the IκB kinase inhibitor Bay 11-7085 before LPS stimulation blocks the ability of LPS to potentiate the activation of caspase-1 by the P2X7R. Thus, caspase-1 regulation in macrophages requires inflammatory stimuli that signal through the TLRs to up-regulate gene products required for activation of the caspase-1 processing machinery in response to K + -releasing stimuli such as ATP.

199 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848