scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
C P Tipler1, S P Hutchon, K Hendil, K Tanaka, S Fishel, R J Mayer 
TL;DR: Although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitIn-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity, suggesting that proteasomes may have further roles to play in normal sperm physiology.
Abstract: We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydrolysing activities; the chymotrypsin activity is ablated by the specific 26S proteasome inhibitor MG132. Confirmation that these large proteases are 26S proteasomes is provided by detection of the 20S proteasome subunits HC2, XAPC7, RN3 and Z and regulatory ATPases MSS1, TBP1, SUG1 and SUG2 by Western analyses with monoclonal antisera. These antigens are found only in the gradient fractions enriched in proteolytic activities. We have also shown that, although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitin-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity. This suggests that proteasomes may have further roles to play in normal sperm physiology.

54 citations

Journal ArticleDOI
TL;DR: The aim of this review is to highlight the role of IR induced-NF-κB inhibitors such as MG132, bortezomib, curcumin, DHMEQ, naringin, sorafenib, genistein and parthenolide in suppression ofIR induced NF-κBs adverse effects.
Abstract: It is well documented that ionizing radiation (IR) activates the transcription factor (NF-κB) which is a trigger for resistance cancer cells to treatment. It is involved in activation of pro-survival signaling pathways and resulting in cancer development and progression. In unstimulated condition, NF-κB is sequestered in cytoplasm but after the cell exposure to IR, proteasomal degradation of IκB flowing phosphorylation via IKK, leads to aberrantly NF-κB activation and nuclear translocation. Therefore, interruption in IκB degradation, proteasome action, IKK phosphorylation and NF-κB nuclear translocation provide robust strategies for inhibiting adverse effect of IR induced NF-κB. In spite of uncompleted elucidation of NF-κB molecular mechanisms, different NF-κB inhibitors have been used in order to inhibiting the IR induced NF-κB. The aim of this review is to highlight the role of IR induced-NF-κB inhibitors such as MG132, bortezomib, curcumin, DHMEQ, naringin, sorafenib, genistein and parthenolide in suppression of IR induced NF-κB adverse effects. Moreover, their chemical, structural characteristics and molecular mechanisms will be discussed.

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that degradation of the Bcl-2 homology 3-only proapoptotic protein Bim plays an important role in cisplatin resistance in ovarian cancer.

54 citations

Journal ArticleDOI
TL;DR: It is found that well-known proteasome inhibitors such as MG132 and bortezomib, as well as the recently discovered thiostrepton, induced p53-independent apoptosis in human cancer cell lines that correlated with p 53-independent induction of proapoptotic Noxa but not Puma protein.
Abstract: Proteasome inhibitors are used against human cancer, but their mechanisms of action are not entirely understood. For example, the role of the tumor suppressor p53 is controversial. We reevaluated the role of p53 in proteasome inhibitor-induced apoptosis by using isogenic human cancer cell lines with different p53 status. We found that well-known proteasome inhibitors such as MG132 and bortezomib, as well as the recently discovered proteasome inhibitor thiostrepton, induced p53-independent apoptosis in human cancer cell lines that correlated with p53-independent induction of proapoptotic Noxa but not Puma protein. In addition, these drugs inhibited growth of several cancer cell lines independently of p53 status. Notably, thiostrepton induced more potent apoptosis in HepG2 cells with p53 knockdown than in parental cells with wild-type p53. Our data confirm that proteasome inhibitors generally induce p53-independent apoptosis in human cancer cells.

54 citations

Journal ArticleDOI
02 Sep 2013-PLOS ONE
TL;DR: MG132 inhibits two distinct proteolytic systems in P. falciparum, and it may serve as a lead molecule for development of dual-target inhibitors of malaria parasites.
Abstract: Among key potential drug target proteolytic systems in the malaria parasite Plasmodium falciparum are falcipains, a family of hemoglobin-degrading cysteine proteases, and the ubiquitin proteasomal system (UPS), which has fundamental importance in cellular protein turnover. Inhibition of falcipains blocks parasite development, primarily due to inhibition of hemoglobin degradation that serves as a source of amino acids for parasite growth. Falcipains prefer P2 leucine in substrates and peptides, and their peptidyl inhibitors with leucine at the P2 position show potent antimalarial activity. The peptidyl inhibitor MG132 (Z-Leu-Leu-Leu-CHO) is a widely used proteasome inhibitor, which also has P2 leucine, and has also been shown to inhibit parasite development. However, the antimalarial targets of MG132 are unclear. We investigated whether MG132 blocks malaria parasite development by inhibiting hemoglobin degradation and/or by targeting the UPS. P. falciparum was cultured with inhibitors of the UPS (MG132, epoxomicin, and lactacystin) or falcipains (E64), and parasites were assessed for morphologies, extent of hemoglobin degradation, and accumulation of ubiquitinated proteins. MG132, like E64 and unlike epoxomicin or lactacystin, blocked parasite development, with enlargement of the food vacuole and accumulation of undegraded hemoglobin, indicating inhibition of hemoglobin degradation by MG132, most likely due to inhibition of hemoglobin-degrading falcipain cysteine proteases. Parasites cultured with epoxomicin or MG132 accumulated ubiquitinated proteins to a significantly greater extent than untreated or E64-treated parasites, indicating that MG132 inhibits the parasite UPS as well. Consistent with these findings, MG132 inhibited both cysteine protease and UPS activities present in soluble parasite extracts, and it strongly inhibited recombinant falcipains. MG132 was highly selective for inhibition of P. falciparum (IC50 0.0476 µM) compared to human peripheral blood mononuclear cells (IC50 10.8 µM). Thus, MG132 inhibits two distinct proteolytic systems in P. falciparum, and it may serve as a lead molecule for development of dual-target inhibitors of malaria parasites.

54 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848