scispace - formally typeset
Search or ask a question
Topic

MG132

About: MG132 is a research topic. Over the lifetime, 1499 publications have been published within this topic receiving 56589 citations. The topic is also known as: MG132 & Z-Leu-leu-leu-al.


Papers
More filters
Journal ArticleDOI
22 Jul 2010-Oncogene
TL;DR: This study points a new role for HSF2 in the regulation of protein degradation and suggests that pan-HSF inhibitors could be valuable tools to reduce chemoresistance to proteasome inhibition observed in cancer therapy.
Abstract: A single heat shock factor (HSF), mediating the heat shock response, exists from yeast to Drosophila, whereas several related HSFs have been found in mammals. This raises the question of the specific or redundant functions of the different members of the HSF family and in particular of HSF1 and HSF2, which are both ubiquitously expressed. Using immortalized mouse embryonic fibroblasts (iMEFs) derived from wild-type, Hsf1(-/-), Hsf2(-/-) or double-mutant mice, we observed the distinctive behaviors of these mutants with respect to proteasome inhibition. This proteotoxic stress reduces to the same extent the viability of Hsf1(-/-)- and Hsf2(-/-)-deficient cells, but through different underlying mechanisms. Contrary to Hsf2(-/-) cells, Hsf1(-/-) cells are unable to induce pro-survival heat shock protein expression. Conversely, proteasome activity is lower in Hsf2(-/-) cells and the expression of some proteasome subunits, such as Psmb5 and gankyrin, is decreased. As gankyrin is an oncoprotein involved in p53 degradation, we analyzed the status of p53 in HSF-deficient iMEFs and observed that it was strongly stabilized in Hsf2(-/-) cells. This study points a new role for HSF2 in the regulation of protein degradation and suggests that pan-HSF inhibitors could be valuable tools to reduce chemoresistance to proteasome inhibition observed in cancer therapy.

40 citations

Journal ArticleDOI
TL;DR: A map of cellular ubiquitin-associated proteins may be useful for further studies of Ubiquitin system function and suggests a link between the ubiquit in system and these cellular processes.
Abstract: To construct a high information content assay for examination of the function of the cellular ubiquitin system, we added his-tagged ubiquitin, ATP, and an ATP-regenerating system to endogenous human cellular ubiquitin system enzymes, and labeled cellular proteins with hexa-histidine tagged ubiquitin in vitro. Labeling depended on ATP, the ATP recycling system, the proteasome inhibitor MG132, and the ubiquitin protease inhibitor ubiquitin aldehyde, and was inhibited by iodoacetamide. Quadruplicate affinity extracted proteins were digested with trypsin, and the peptides were analyzed by 2D capillary LC-MS/MS, SEQUEST, MEDUSA, and support vector machine calculations. Identified proteins included 22 proteasome subunits or associated proteins, 18 E1, E2, or E3 ubiquitin system enzymes or related proteins, 4 ubiquitin domain proteins and 36 proteins in functional clusters associated with redox processes, endocytosis/vesicle trafficking, the cytoskeleton, DNA damage/repair, calcium binding, and mRNA splicing. This suggests a link between the ubiquitin system and these cellular processes. This map of cellular ubiquitin-associated proteins may be useful for further studies of ubiquitin system function.

40 citations

Journal ArticleDOI
TL;DR: It is confirmed that CMV could more abundantly accumulate in the CAT3-knockout mutant (cat3), and that CAT3 makes host plants a little more tolerant to CMV, and suggests that the host proteasome pathway is, at least partially, responsible for the degradation of CAT3, which is manifested in CMV-infected tissues.
Abstract: Cucumber mosaic virus (CMV) can induce a specific necrosis on Arabidopsis through the interaction between the CMV 2b protein and host catalase, in which the ubiquitin–proteasome pathway may be involved. We previously reported that the CMV 2b protein, the viral RNA silencing suppressor, interacted with the H2O2 scavenger catalase (CAT3), leading to necrosis on CMV-inoculated Arabidopsis leaves. We here confirmed that CMV could more abundantly accumulate in the CAT3-knockout mutant (cat3), and that CAT3 makes host plants a little more tolerant to CMV. We also found that the necrosis severity is not simply explained by a high level of H2O2 given by the lack of CAT3, because the recombinant CMV, CMV-N, induced much milder necrosis in cat3 than in the wild type, suggesting some specific mechanism for the necrosis induction. To further characterize the 2b-inducing necrosis in relation to its binding to CAT3, we conducted the agroinfiltration experiments to overexpress CAT3 and 2b in N. benthamiana leaves. The accumulation levels of CAT3 were higher when co-expressed with the CMV-N 2b (N2b) than with CMV-Y 2b (Y2b). We infer that N2b made a more stable complex with CAT3 than Y2b did, and the longevity of the 2b–CAT3 complex seemed to be important to induce necrosis. By immunoprecipitation (IP) with an anti-ubiquitin antibody followed by the detection with anti-CAT3 antibodies, we detected a higher molecular-weight smear and several breakdown products of CAT3 among the IP-proteins. In addition, the proteasome inhibitor MG132 treatment could actually increase the accumulation levels of CAT3. This study suggests that the host proteasome pathway is, at least partially, responsible for the degradation of CAT3, which is manifested in CMV-infected tissues.

40 citations

Journal ArticleDOI
TL;DR: It is shown that MG132, a proteasome inhibitor, significantly blocked pancreatic-cancer-associated angiogenesis through inhibition of NF-κB and NF-σκB-dependent proangiogenic gene products VEGF and IL-8.
Abstract: Since angiogenesis enables solid tumors, including pancreatic cancer (PaCa), to grow and metastasize, the development of anti-angiogenic agents is currently one of the urgent issues. Proteasome inhibitors are well known for inhibiting nuclear factor-kappa B (NF-κB) activity in various cancer cells, but little is known about their biologic mechanisms against angiogenesis in PaCa. We divided human PaCa cell lines into high-angiogenic (BxPC-3 and SW 1990) and low-angiogenic (MIA PaCa-2 and Capan-2) groups. The high-angiogenic PaCa cell lines constitutively expressed high NF-κB activity and produced high levels of vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8). The conditioned media from BxPC-3 significantly enhanced both proliferation of and tube formation by human umbilical vein endothelial cells (HUVECs) and these enhancements were significantly inhibited by the proteasome inhibitor MG132 treatment. Collectively, MG132 blocked PaCa-derived VEGF and IL-8 production through inhibition of NF-κB activity. Thus, proteasome inhibitors may prove beneficial as anti-angiogenic therapy for PaCa. Our studies show that MG132, a proteasome inhibitor, significantly blocked pancreatic-cancer-associated angiogenesis through inhibition of NF-κB and NF-κB-dependent proangiogenic gene products VEGF and IL-8.

40 citations

Journal ArticleDOI
TL;DR: This is the first report to show the involvement of the ubiquitin-proteasome pathway in PEPCk turnover and the occurrence of PEPCks with higher molecular sizes, which was noted previously with cell extracts from various plants.
Abstract: In C4 photosynthesis, phosphoenolpyruvate carboxylase (PEPC) is the enzyme responsible for catalyzing the primary fixation of atmospheric CO2. The activity of PEPC is regulated diurnally by reversible phosphorylation. PEPC kinase (PEPCk), a protein kinase involved in this phosphorylation, is highly specific for PEPC and consists of only the core domain of protein kinase. Owing to its extremely low abundance in cells, analysis of its regulatory mechanism at the protein level has been difficult. Here we employed a transient expression system using maize mesophyll protoplasts. The PEPCk protein with a FLAG tag could be expressed correctly and detected with high sensitivity. Rapid degradation of PEPCk protein was confirmed and shown to be blocked by MG132, a 26S proteasome inhibitor. Furthermore, MG132 enhanced accumulation of PEPCk with increased molecular sizes at about 8 kDa intervals. Using anti-ubiquitin antibody, this increase was shown to be due to ubiquitination. This is the first report to show the involvement of the ubiquitin-proteasome pathway in PEPCk turnover. The occurrence of PEPCks with higher molecular sizes, which was noted previously with cell extracts from various plants, was also suggested to be due to ubiquitination of native PEPCk.

40 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Cell culture
133.3K papers, 5.3M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
202270
202157
202059
201962
201848