scispace - formally typeset
Search or ask a question
Topic

Microalloyed steel

About: Microalloyed steel is a research topic. Over the lifetime, 2183 publications have been published within this topic receiving 33586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a dual-phase steel containing niobium, vanadium and titanium as microalloying elements was tested for hydrogen embrittlement and the susceptibility to HE was observed to be closely related to the microstructural state.
Abstract: A dual-phase steel containing niobium, vanadium and titanium as microalloying elements was tested for hydrogen embrittlement (HE). The susceptibility to HE was observed to be closely related to the microstructural state. Hydrogenated specimens intercritically annealed at relatively low temperatures to develop martensite islands in a ferrite matrix basically exhibited quasi-cleavage fracture with some ductile dimpling. The mode of fracture in charged specimens quenched from higher intercritical annealing temperatures was predominantly intergranular fracture along prior austenite grain boundaries and cracking of martensite laths. The detrimental role of residual stresses, retained austenite and microalloying carbides in the process of HE is discussed.

7 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation, and the results showed that the larger volume fraction of ferrite can be obtained for different isothermal temperatures.
Abstract: The microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation. The microstructural characteristics of tested steel were analyzed using OM and TEM. The results show that the larger volume fraction of ferrite can be obtained for different isothermal temperatures. The ferrite volume fraction is increased and ferrite grain size is reduced as the isothermal temperature is lowered. The planar interphase precipitation can be observed for different isothermal temperatures, and both sheet spacing and precipitates size are refined by lowering isothermal temperature. Moreover, the nanometer-sized carbides have a NaCl-type crystal structure with a lattice parameter of about 0.436 nm and they can obey one variant of Baker-Nutting (B-N) orientation relationship of (100)(carbide)//(100)(ferrite) and [011](carbide)//[001](ferrite). The precipitation hardening for the specimen treated at 680 degrees C for 30 min can reach 360.6 MPa.

7 citations

Journal ArticleDOI
TL;DR: In this paper, neural network models have been developed to estimate the mechanical properties of microalloyed steels containing Nb + V or Nb+ Ti, which can be used for prediction of properties in a running plant and for development of new alloys.
Abstract: The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

7 citations

Journal ArticleDOI
TL;DR: Based on the experimental flow stress curves, a constitutive model that was expressed by the hyperbolic laws in an Arrhenius-type equation was established, and the material parameters of the model were expressed as 6th order polynomial form of strain this paper.
Abstract: Isothermal hot compression experiments of F45V, a microalloyed steel, were performed on a Gleeble-1500 thermo-mechanical simulator at temperatures of 950–1200 °C and strain rate of 0.01–10s−1. Based on the experimental flow stress curves, a constitutive model that was expressed by the hyperbolic laws in an Arrhenius-type equation was established, and the material parameters of the model were expressed as 6th order polynomial form of strain. Standard statistical parameters such as correlation coefficient and average absolute relative error were employed to quantify the predictability of the model. They were found to be 0.995 and 4.34% respectively. The results show that the established constitutive model can predict the magnitude and tendency of flow stress with the increase of deformation accurately, and can be used for the numerical simulation of hot forging process of the F45V steel.

7 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Deformation (engineering)
41.5K papers, 899.7K citations
82% related
Grain boundary
70.1K papers, 1.5M citations
81% related
Welding
206.5K papers, 1.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202288
202164
202090
201986
201888