scispace - formally typeset
Search or ask a question
Topic

Microbial biodegradation

About: Microbial biodegradation is a research topic. Over the lifetime, 1647 publications have been published within this topic receiving 75473 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article focuses on the growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions and reveals that degradation of oxygenated and non-oxygenated hydrocarbon degradation by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.
Abstract: Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.

261 citations

Journal ArticleDOI
TL;DR: A review of pathways for biodegradation of DDT, DDD, and DDE by bacteria and fungi is described in this article, where Ligninolytic fungi and chlorobiphenyl degrading bacteria are promising candidates for remediation.
Abstract: Microbial degradation of DDT residues is one mechanism for loss of DDT from soil. In this review pathways for biodegradation of DDT, DDD, and DDE by bacteria and fungi are described. Biodegradation of DDT residues can proceed in soil, albeit at a slow rate. To enhance degradation in situ a number of strategies are proposed. They include the addition of DDT‐metabolising microbes to contaminated soils and/or the manipulation of environmental conditions to enhance the activity of these microbes. Ligninolytic fungi and chlorobiphenyl degrading bacteria are promising candidates for remediation. Flooding of soil and the addition of organic matter can enhance DDT degradation. As biodegradation may be inhibited by lack of access of the microbe to the contaminant, the soil may need to be pre‐treated with a surfactant. Unlike DDT, little is known about the biodegradation of DDE, and this knowledge is crucial as DDE can be the predominant residue in some soils.

257 citations

Journal ArticleDOI
TL;DR: The first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons is presented, which indicates a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment.
Abstract: Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page http://www.micro-genomes.mpg.de/ebn1/.

257 citations

Journal ArticleDOI
TL;DR: The different stages of biodegradation are described and several techniques used by some authors working in this domain are state, including use of various techniques for the analysis of degradation in vitro.
Abstract: Biodegradation is considered to take place throughout three stages: biodeterioration, biofragmentation and assimilation, without neglect the participation of abiotic factors. However, most of the techniques used by researchers in this area are inadequate to provide evidence of the final stage: assimilation. In this review, we describe the different stages of biodegradation and we state several techniques used by some authors working in this domain. Validate assimilation (including mineralization) is an important aspect to guarantee the real biodegradability of items of consumption (in particular friendly environmental new materials). Since LDPE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing LDPEs. Recent data showed that biodegradation of LDPE waste with selected microbial strains became a viable solution. Among biological agents, microbial enzymes are one of the most powerful tools for the biodegradation of LDPEs. Activity of biodegradation of most enzymes is higher in fungi than in bacteria. It is important to consider fungal degradation of LDPE in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of LDPEs have been carried out in order to overcome the environmental problems associated with LDPE waste. This paper reviews the current research on the biodegradation of LDPEs and also use of various techniques for the analysis of degradation in vitro.

253 citations

Journal ArticleDOI
TL;DR: It is demonstrated that it may be possible to use a sequential anaerobic-aerobic process to completely degrade TBBPA in contaminated soils.
Abstract: Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-tryptone-glucose-yeast extract medium resulted in a 80% decrease in the TBBPA concentration and accumulation of a single metabolite. This metabolite was identified by gas chromatography-mass spectrometry (GC-MS) as nonbrominated bisphenol A (BPA). On the other hand, TBP was reductively dehalogenated to phenol, which was further metabolized under anaerobic conditions. BPA persisted in the anaerobic slurry but was degraded aerobically. A gram-negative bacterium (strain WH1) was isolated from the contaminated soil, and under aerobic conditions this organism could use BPA as a sole carbon and energy source. During degradation of BPA two metabolites were detected in the culture medium, and these metabolites were identified by GC-MS and high-performance liquid chromatography as 4-hydroxybenzoic acid and 4-hydroxyacetophenone. Both of those compounds were utilized by WH1 as carbon and energy sources. Our findings demonstrate that it may be possible to use a sequential anaerobic-aerobic process to completely degrade TBBPA in contaminated soils.

247 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
87% related
Organic matter
45.5K papers, 1.6M citations
86% related
Nitrate
28.2K papers, 840.7K citations
83% related
Biomass
57.2K papers, 1.4M citations
83% related
Freundlich equation
27.6K papers, 941.4K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202366
2022153
202172
202068
201962