scispace - formally typeset
Search or ask a question
Topic

Microbial biodegradation

About: Microbial biodegradation is a research topic. Over the lifetime, 1647 publications have been published within this topic receiving 75473 citations.


Papers
More filters
01 Jan 1986
TL;DR: It's important for you to start having that hobby that will lead you to join in better concept of life and reading will be a positive activity to do every time.
Abstract: microbial degradation of xenobiotics What to say and what to do when mostly your friends love reading? Are you the one that don't have such hobby? So, it's important for you to start having that hobby. You know, reading is not the force. We're sure that reading will lead you to join in better concept of life. Reading will be a positive activity to do every time. And do you know our friends become fans of microbial degradation of xenobiotics as the best book to read? Yeah, it's neither an obligation nor order. It is the referred book that will not make you feel disappointed.

37 citations

Journal ArticleDOI
TL;DR: Kaolinite was more effective than quartz in promoting phenanthrene degradation and bacterial growth and it was revealed that a more intimate association was established between GY2B and kaolinite.

37 citations

Journal ArticleDOI
TL;DR: Evidence is provided that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.
Abstract: . Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N′-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

37 citations

Journal ArticleDOI
TL;DR: The purpose of this study was to assess biodegradation of benzene and toluene in groundwater upon amendment with nutrients and an enriched hydrocarbon oxidizing culture.
Abstract: Certain organic pollutants reaching the groundwater are subject to biotransformations. Currently, remedial measures promoting microbial degradation of pollutants are becoming very attractive because of their cost-effectiveness in removal of the contaminants. Current technology for reclaiming groundwater polluted with petroleum hydrocarbons involves (i) pumping the water into an aerated stripping tower, (ii) removal by sorbents, or (iii) biodegradation in situ or pumped into a bioreactor. Among the bioreactors, fixed film and suspended growth reactors are the most popular systems. Gasoline contamination of groundwaters is becoming an alarming and widespread problem. A major concern with petroleum contamination is the benzene, toluene and xylene (BTX) content reaching the groundwater because of their solubility and high toxicity. The state of California Department of Health Services now recommends that remedial action be taken when the concentration of benzene and toluene exceeds 0.7 and 100 {mu}g L{sup {minus}1}, respectively. The purpose of this study was to assess biodegradation of benzene and toluene in groundwater upon amendment with nutrients and an enriched hydrocarbon oxidizing culture.

37 citations

Journal ArticleDOI
TL;DR: For samples collected over 45 d, ND24 values did not necessarily correlate with ergosterol or laccase amounts but in most cases, they were over 30% degradation, indicating that T. versicolor may be suitable for bioremediation of sewage sludge in the studied period.

37 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
87% related
Organic matter
45.5K papers, 1.6M citations
86% related
Nitrate
28.2K papers, 840.7K citations
83% related
Biomass
57.2K papers, 1.4M citations
83% related
Freundlich equation
27.6K papers, 941.4K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202366
2022153
202172
202068
201962