scispace - formally typeset
Search or ask a question
Topic

Microbial biodegradation

About: Microbial biodegradation is a research topic. Over the lifetime, 1647 publications have been published within this topic receiving 75473 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It was found that microbes could adapt to using chlorinated benzenes by evolution of new enzyme specificities and by exchange of genetic material to improve biodegradability of halogenated compounds.
Abstract: Soil column experiments were performed to obtain insight in the different biological and physico-chemical processes affecting biodegradation of halogenated compounds under natural conditions in a water infiltration site. Lower chlorinated aromatic compounds could be degraded under aerobic conditions, whereas highly chlorinated compounds and chlorinated aliphatic compounds were mainly transformed under anaerobic conditions. Microorganisms which derive energy from reductive dechlorination were enriched and characterized. It was found that microbes could adapt to using chlorinated benzenes by evolution of new enzyme specificities and by exchange of genetic material. For halogenated pollutants, which are generally hydrophobic, sorption processes control the concentration available for biodegradation. The effects of very low concentrations of halogenated compounds on their biodegradability are described. The use of isolated bacterial strains to enhance biodegradation was evaluated with respect to their temperature-related activity and to their adhesion properties.

30 citations

Journal ArticleDOI
TL;DR: Gene cloning and overexpression indicated that a novel nitrile hydratase with three unusual subunits (AnhD, AnhE, and AnhA) without accessory protein mediated IM-1-2 formation could be used to remediate environments contaminated with acetamiprid.
Abstract: Neonicotinoid insecticide pollution in soil and water poses serious environmental risks. Microbial biodegradation is an important neonicotinoid insecticide degradation pathway in the environment. I...

30 citations

Journal ArticleDOI
TL;DR: This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities.
Abstract: The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities.

30 citations

Journal ArticleDOI
TL;DR: A review of the possibilities for the removal of quinoline and its derivatives can be found in this article, where a number of bacteria have the ability to eliminate quinnoline, but only a portion of them are capable of its mineralization.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors determined the PE degradation efficiency of two Pseudomonas, identified by 16S rDNA analysis, and elucidated their potential mechanisms through whole genome sequencing, which provided a theoretical basis for further research that investigates the mechanism driving the degradation and metabolism of discarded PE in the environment.

30 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
87% related
Organic matter
45.5K papers, 1.6M citations
86% related
Nitrate
28.2K papers, 840.7K citations
83% related
Biomass
57.2K papers, 1.4M citations
83% related
Freundlich equation
27.6K papers, 941.4K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202366
2022153
202172
202068
201962