scispace - formally typeset
Search or ask a question
Topic

Microbial biodegradation

About: Microbial biodegradation is a research topic. Over the lifetime, 1647 publications have been published within this topic receiving 75473 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobe microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies.
Abstract: Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations fun

279 citations

Journal ArticleDOI
S Barathi1, N Vasudevan1
TL;DR: A strain of Pseudomonas fluorescens, isolated from petroleum hydrocarbon-contaminated soil was examined for its ability to utilize a variety of hydrocarbon substrates and emulsified a number of aliphatic and aromatic hydrocarbons.

273 citations

Journal ArticleDOI
TL;DR: The aim of this review is to highlight the biodegradative capabilities of microalgae on aromatic compounds, ranging from simple monocyclic to more complex polycyclic pollutants.
Abstract: The microbial degradation of aromatic pollutants has been well characterized over a period of more than 30 years. The microbes of most interest have been bacteria and fungi. Only relatively recently has the question of how algae figure in the catabolism of these compounds attracted a degree of interest. The aim of this review is to highlight the biodegradative capabilities of microalgae on aromatic compounds, ranging from simple monocyclic to more complex polycyclic pollutants. This paper will briefly encompass studies which have investigated the growth on and the oxidation of these compounds by algae, as well as a more detailed characterization of the catabolic sequences involved in the transformation of these compounds.

263 citations

Journal ArticleDOI
TL;DR: Toxicity assays need to be incorporated into the procedures used to monitor the effectiveness of PAH bioremediation, as much of the current PAH research focuses on techniques to enhance the bioavailability and, therefore, the degradation rates ofPAHs at polluted sites.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, some of which are on the US Environmental Protection Agency priority pollutant list. Consequently, timely clean-up of contaminated sites is important. The lower-mol-wt PAHs are amenable to bioremediation; however, higher-mol-wt PAHs seem to be recalcitrant to microbial degradation. The rates of biodegradation of PAHs are highly variable and are dependent not only on PAH structure, but also on the physicochemical parameters of the site as well as the number and types of microorganisms present. PAHs sorb to organic matter in soils and sediments, and the rate of their desorption strongly influences the rate at which microorganisms can degrade the pollutants. Much of the current PAH research focuses on techniques to enhance the bioavailability and, therefore, the degradation rates of PAHs at polluted sites. Degradation products of PAHs are, however, not necessarily less toxic than the parent compounds. Therefore, toxicity assays need to be incorporated into the procedures used to monitor the effectiveness of PAH bioremediation. In addition, this article highlights areas of PAH research that require further investigation.

262 citations

Journal ArticleDOI
TL;DR: Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal.
Abstract: Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

261 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
87% related
Organic matter
45.5K papers, 1.6M citations
86% related
Nitrate
28.2K papers, 840.7K citations
83% related
Biomass
57.2K papers, 1.4M citations
83% related
Freundlich equation
27.6K papers, 941.4K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202366
2022153
202172
202068
201962