Topic
Microblogging
About: Microblogging is a(n) research topic. Over the lifetime, 4186 publication(s) have been published within this topic receiving 137030 citation(s). The topic is also known as: microblog.
Papers published on a yearly basis
Papers
More filters
26 Apr 2010
TL;DR: In this paper, the authors have crawled the entire Twittersphere and found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks.
Abstract: Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological characteristics of Twitter and its power as a new medium of information sharing.We have crawled the entire Twitter site and obtained 41.7 million user profiles, 1.47 billion social relations, 4,262 trending topics, and 106 million tweets. In its follower-following topology analysis we have found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks [28]. In order to identify influentials on Twitter, we have ranked users by the number of followers and by PageRank and found two rankings to be similar. Ranking by retweets differs from the previous two rankings, indicating a gap in influence inferred from the number of followers and that from the popularity of one's tweets. We have analyzed the tweets of top trending topics and reported on their temporal behavior and user participation. We have classified the trending topics based on the active period and the tweets and show that the majority (over 85%) of topics are headline news or persistent news in nature. A closer look at retweets reveals that any retweeted tweet is to reach an average of 1,000 users no matter what the number of followers is of the original tweet. Once retweeted, a tweet gets retweeted almost instantly on next hops, signifying fast diffusion of information after the 1st retweet.To the best of our knowledge this work is the first quantitative study on the entire Twittersphere and information diffusion on it.
5,761 citations
12 Aug 2007
TL;DR: It is found that people use microblogging to talk about their daily activities and to seek or share information and the user intentions associated at a community level are analyzed to show how users with similar intentions connect with each other.
Abstract: Microblogging is a new form of communication in which users can describe their current status in short posts distributed by instant messages, mobile phones, email or the Web. Twitter, a popular microblogging tool has seen a lot of growth since it launched in October, 2006. In this paper, we present our observations of the microblogging phenomena by studying the topological and geographical properties of Twitter's social network. We find that people use microblogging to talk about their daily activities and to seek or share information. Finally, we analyze the user intentions associated at a community level and show how users with similar intentions connect with each other.
2,935 citations
Proceedings Article•
16 May 2010TL;DR: It is found that the mere number of messages mentioning a party reflects the election result, and joint mentions of two parties are in line with real world political ties and coalitions.
Abstract: Twitter is a microblogging website where users read and write millions of short messages on a variety of topics every day This study uses the context of the German federal election to investigate whether Twitter is used as a forum for political deliberation and whether online messages on Twitter validly mirror offline political sentiment Using LIWC text analysis software, we conducted a content-analysis of over 100,000 messages containing a reference to either a political party or a politician Our results show that Twitter is indeed used extensively for political deliberation We find that the mere number of messages mentioning a party reflects the election result Moreover, joint mentions of two parties are in line with real world political ties and coalitions An analysis of the tweets’ political sentiment demonstrates close correspondence to the parties' and politicians’ political positions indicating that the content of Twitter messages plausibly reflects the offline political landscape We discuss the use of microblogging message content as a valid indicator of political sentiment and derive suggestions for further research
2,546 citations
Proceedings Article•
01 May 2010
TL;DR: This paper shows how to automatically collect a corpus for sentiment analysis and opinion mining purposes and builds a sentiment classifier, that is able to determine positive, negative and neutral sentiments for a document.
Abstract: Microblogging today has become a very popular communication tool among Internet users. Millions of users share opinions on different aspects of life everyday. Therefore microblogging web-sites are rich sources of data for opinion mining and sentiment analysis. Because microblogging has appeared relatively recently, there are a few research works that were devoted to this topic. In our paper, we focus on using Twitter, the most popular microblogging platform, for the task of sentiment analysis. We show how to automatically collect a corpus for sentiment analysis and opinion mining purposes. We perform linguistic analysis of the collected corpus and explain discovered phenomena. Using the corpus, we build a sentiment classifier, that is able to determine positive, negative and neutral sentiments for a document. Experimental evaluations show that our proposed techniques are efficient and performs better than previously proposed methods. In our research, we worked with English, however, the proposed technique can be used with any other language.
2,440 citations
04 Feb 2010
TL;DR: Experimental results show that TwitterRank outperforms the one Twitter currently uses and other related algorithms, including the original PageRank and Topic-sensitive PageRank, which is proposed to measure the influence of users in Twitter.
Abstract: This paper focuses on the problem of identifying influential users of micro-blogging services. Twitter, one of the most notable micro-blogging services, employs a social-networking model called "following", in which each user can choose who she wants to "follow" to receive tweets from without requiring the latter to give permission first. In a dataset prepared for this study, it is observed that (1) 72.4% of the users in Twitter follow more than 80% of their followers, and (2) 80.5% of the users have 80% of users they are following follow them back. Our study reveals that the presence of "reciprocity" can be explained by phenomenon of homophily. Based on this finding, TwitterRank, an extension of PageRank algorithm, is proposed to measure the influence of users in Twitter. TwitterRank measures the influence taking both the topical similarity between users and the link structure into account. Experimental results show that TwitterRank outperforms the one Twitter currently uses and other related algorithms, including the original PageRank and Topic-sensitive PageRank.
1,864 citations