scispace - formally typeset
Topic

Microgrid

About: Microgrid is a(n) research topic. Over the lifetime, 25760 publication(s) have been published within this topic receiving 395381 citation(s).
Papers
More filters

Journal ArticleDOI
01 Nov 2009-
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

3,466 citations


Journal ArticleDOI
Abstract: This paper describes and evaluates the feasibility of control strategies to be adopted for the operation of a microgrid when it becomes isolated. Normally, the microgrid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load shedding strategies is included in this paper.

2,118 citations


Journal ArticleDOI
Abstract: The analysis of the small-signal stability of conventional power systems is well established, but for inverter based microgrids there is a need to establish how circuit and control features give rise to particular oscillatory modes and which of these have poor damping. This paper develops the modeling and analysis of autonomous operation of inverter-based microgrids. Each sub-module is modeled in state-space form and all are combined together on a common reference frame. The model captures the detail of the control loops of the inverter but not the switching action. Some inverter modes are found at relatively high frequency and so a full dynamic model of the network (rather than an algebraic impedance model) is used. The complete model is linearized around an operating point and the resulting system matrix is used to derive the eigenvalues. The eigenvalues (termed "modes") indicate the frequency and damping of oscillatory components in the transient response. A sensitivity analysis is also presented which helps identifying the origin of each of the modes and identify possible feedback signals for design of controllers to improve the system stability. With experience it is possible to simplify the model (reduce the order) if particular modes are not of interest as is the case with synchronous machine models. Experimental results from a microgrid of three 10-kW inverters are used to verify the results obtained from the model

2,071 citations


Journal ArticleDOI
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

1,923 citations


Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

1,884 citations


Network Information
Related Topics (5)
Distributed generation

35.1K papers, 667K citations

96% related
AC power

80.9K papers, 880.8K citations

96% related
Electric power system

133K papers, 1.7M citations

95% related
Maximum power point tracking

29K papers, 484.8K citations

94% related
Power optimizer

10.5K papers, 199.2K citations

94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022126
20212,923
20203,612
20193,686
20183,271
20172,729

Top Attributes

Show by:

Topic's top 5 most impactful authors

Josep M. Guerrero

489 papers, 29.2K citations

Juan C. Vasquez

195 papers, 14.2K citations

Bhim Singh

187 papers, 913 citations

Gevork B. Gharehpetian

82 papers, 2K citations

Sukumar Mishra

82 papers, 900 citations