Topic

# Micromechanics

About: Micromechanics is a(n) research topic. Over the lifetime, 6000 publication(s) have been published within this topic receiving 162635 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1982TL;DR: In this paper, the authors present numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals using double kink mechanisms for discrete dislocations in BCCs.

Abstract: Preface Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals Microstructure and stray electric fields at surface cracks in ferroelectrics Double kink mechanisms for discrete dislocations in BCC crystals The expanding spherical inhomogeneity with transformation strain A new model of damage: a moving thick layer approach On configurational forces at boundaries in fracture mechanics HotQC simulation of nanovoid growth under tension in copper Coupled phase transformations and plasticity as a field theory of deformation incompatibility Continuum strain-gradient elasticity from discrete valence force field theory for diamond-like crystals

4,782 citations

•

01 Jul 1993TL;DR: In this paper, the authors introduce basic elements of elasticity theory: foundations geometric foundations, kinematic foundations, dynamic foundations, constitutive relations elastostatic problems of linear elasticity boundary value problems and extremum principles three-dimensional problems solution of singular problems.

Abstract: Part 1 Overall properties of heterogeneous solids: aggregate properties and averaging methods aggregate properties, averaging methods elastic solids with microcavities and microcracks linearly elastic solids, elastic solids with traction-free defects, elastic solids with micrcavities, elastic solids with microcracks elastic solids with micro-inclusions overall elastic modulus and compliance tensors, examples o elastic solids with elastic micro-inclusions, upper and lower bounds for overall elastic moduli, self-consistent differential and related averaging methods, Eshelby's tensor and related topics solids with periodic microstructure general properties and field equations, overall properties of solids with periodic microstructure, mirror-image decomposition of periodic fields. Part 2 Introduction to basic elements of elasticity theory: foundations geometric foundations, kinematic foundations, dynamic foundations, constitutive relations elastostatic problems of linear elasticity boundary-value problems and extremum principles three-dimensional problems solution of singular problems. Appendix: references.

2,494 citations

•

01 Jan 1994

TL;DR: In this paper, the authors present an analysis of the properties of a continuous fiber-reinforced Lamina and its effect on the strength of the composite components, including the elasticity and robustness of the components.

Abstract: Introduction Basic Concepts Constituent Materials for Composites Structural Applications of Composites Multifunctional Applications of Composites Fabrication Processes Elements of Mechanical Behavior of Composites Review of Basic Mechanics of Materials Equations Lamina Stress-Strain Relationships Introduction Effective Moduli in Stress-Strain Relationships Symmetry in Stress-Strain Relationships Orthotropic and Isotropic Engineering Constants The Specially Orthotropic Lamina The Generally Orthotropic Lamina Effective Moduli of a Continuous Fiber-Reinforced Lamina Introduction Elementary Mechanics of Materials Models Improved Mechanics of Materials Models Elasticity Models Semiempirical Models Strength of a Continuous Fiber-Reinforced Lamina Introduction Multiaxial Strength Criteria Micromechanics Models for Lamina Strength Analysis of Lamina Hygrothermal Behavior Introduction Hygrothermal Degradation of Properties Lamina Stress-Strain Relationships Including Hygrothermal Effects Micromechanics Models for Hygrothermal Properties Analysis of a Discontinuously Reinforced Lamina Introduction Aligned Discontinuous Fibers Off-Axis-Aligned Discontinuous Fibers Randomly Oriented Discontinuous Fibers Nanofibers and Nanotubes Particulates Hybrid Multiscale Reinforcements Analysis of Laminates Introduction Theory of Laminated Beams Theory of Laminated Plates with Coupling Stiffness Characteristics of Selected Laminate Configurations Derivation and Use of Laminate Compliances Hygrothermal Effects in Laminates Interlaminar Stresses Laminate Strength Analysis Deflection and Buckling of Laminates Selection of Laminate Designs Application of Laminate Analysis to Composite Structures Analysis of Viscoelastic and Dynamic Behavior Introduction Linear Viscoelastic Behavior of Composites Dynamic Behavior of Composites Nanoenhancement of Viscoelastic and Dynamic Properties Analysis of Fracture Introduction Fracture Mechanics Analysis of Through-Thickness Cracks Stress Fracture Criteria for Through-Thickness Notches Interlaminar Fracture Nanoenhancement of Fracture Toughness Mechanical Testing of Composites and Their Constituents Introduction Measurement of Constituent Material Properties Measurement of Basic Composite Properties Measurement of Viscoelastic and Dynamic Properties Measurement of Hygrothermal Properties Appendix A: Matrix Concepts and Operations Appendix B: Stress Equilibrium Equations Appendix C: Strain-Displacement Equations Index Problems and References appear at the end of each chapter.

1,532 citations

••

TL;DR: In this article, the internal inhomogeneities of stress and strain in an arbitrarily deformed aggregate of elasto-plastic crystals are evaluated theoretically using a tensor constitutive law of a general kind.

Abstract: T he internal inhomogeneities of stress and strain in an arbitrarily deformed aggregate of elasto-plastic crystals are evaluated theoretically. A tensor constitutive law of a general kind is assumed for the individual crystals. The implied mechanical properties of the aggregate as a whole are estimated by means of a self-consistent model akin to one used by H ershey (1954), K roner (1958, 1961) and B udiansky and W u (1962), but differing in significant respects.

1,282 citations

01 Jan 2000

TL;DR: In this paper, the authors introduce basic concepts of stiffness and strength underlying the mechanics of fiber-reinforced advanced composite materials, such as continuous-fiber composites, which deal with the relations between macroscopic engineering properties and the microscopic distribution of the material's constituents.

Abstract: This module introduces basic concepts of stiffness and strength underlying the mechanics of fiber-reinforced advanced composite materials. This aspect of composite materials technology is sometimes terms “micromechanics,” because it deals with the relations between macroscopic engineering properties and the microscopic distribution of the material’s constituents, namely the volume fraction of fiber. This module will deal primarily with unidirectionally-reinforced continuous-fiber composites, and with properties measured along and transverse to the fiber direction.

1,236 citations