scispace - formally typeset
Search or ask a question
Topic

Micromechanics

About: Micromechanics is a research topic. Over the lifetime, 6000 publications have been published within this topic receiving 162635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general thermomechanical framework applicable to rate-dependent granular materials with damage and plasticity is developed, and an expression for macro-scale Cauchy stress tensor is obtained in terms of the micro-scale grain interaction forces and the relationship between micro- and macroscale kinematics.
Abstract: Thermomechanics and granular micromechanics approaches are combined to derive constitutive equations for modeling rate-dependent granular materials with damage and plasticity. The derivation is motivated by the recognition that the effect of micro-scale mechanisms upon the macro-scale behavior is known to be significant for granular materials. A general thermomechanical framework applicable to rate-dependent granular materials with damage and plasticity is developed. Based upon this framework, an expression for macro-scale Cauchy stress tensor is obtained in terms of the micro-scale grain interaction forces and the relationship between micro- and macro-scale kinematics. In addition, a Clausius–Duhem type inequality applicable to inter-granular interaction is derived, which is used to establish micro-scale constitutive relations for particular type of inter-granular interactions. The expression for Cauchy stress tensor and the micro-scale constitutive relations is then combined under a mean field kinematic assumption to obtain evolution-type macro-scale constitutive equations. The advantage of the granular micromechanics approach is that the damage and plasticity are defined using simple 1d functions at micro-scale, and complicated plastic potentials, damage functions and rules for their evolution are not required. The resultant model is applied to investigate primary, secondary and tertiary creep, creep-recovery as well as rate-dependent response under uniaxial compressive loading. Model applicability is also demonstrated for asymmetric tensile-compressive response under creep-recovery loading. The model is used to evaluate the evolution of elastic energy, and viscous, plastic and damage dissipation at the macro- and micro-scale with respect to creep time and loading level. The results show the development of loading-induced anisotropy due to damage and plasticity in these materials.

68 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed plane strain deformations of a representative volume element (RVE) to evaluate effective thermophysical parameters of a particulate composite comprised of two perfectly bonded heat conducting elasto-thermo-visco-plastic constituents.

68 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of volume fraction and diameter of the CNTs, loading level and interphase including the materials behavior and size on the creep-recovery strain of the nanocomposite were examined.

68 citations

Journal ArticleDOI
D. Garoz1, F.A. Gilabert1, Ruben Sevenois1, Siebe Spronk1, W. Van Paepegem1 
TL;DR: In this paper, an implementation-dedicated analysis of Periodic Boundary Conditions (PBCs) for finite element (FE) models incorporating highly nonlinear effects due to plasticity and damage is presented.
Abstract: This paper presents an implementation-dedicated analysis of Periodic Boundary Conditions (PBCs) for Finite Element (FE) models incorporating highly non-linear effects due to plasticity and damage. This research addresses fiber-reinforced composite materials modeled at micros-scale level using a Representative Volume Element (RVE), where its overall mechanical response is obtained via homogenization techniques. For the sake of clearness, a unidirectional ply with randomly distributed fibers RVE model is assumed. PBCs are implemented for implicit and explicit FE solvers, where conformal and non-conformal meshes can be used. The influence of applying PBCs in the reliability of the mechanical response under tension and shear loading is assessed. Furthermore, the Poisson effect and the consistency of damage and fiber debonding propagation through the periodic boundaries are reported as well as their impact on the homogenized results. Likewise, numerical aspects like computational performance and accuracy are evaluated comparing implicit- versus explicit-based solutions.

68 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Finite element method
178.6K papers, 3M citations
89% related
Microstructure
148.6K papers, 2.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022419
2021203
2020235
2019208
2018247