scispace - formally typeset
Search or ask a question
Topic

Micromechanics

About: Micromechanics is a research topic. Over the lifetime, 6000 publications have been published within this topic receiving 162635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model for mechanical behavior and failure of brittle solids of geologic origin is developed for a hard polycrystalline rock under various loading regimes, and the mean fragment size of failed material arises from geometric arguments in terms of the evolving average crack radius and crack density.
Abstract: A model is developed for mechanical behavior and failure of brittle solids of geologic origin. Mechanisms considered include elastic stretch and rotation, thermal expansion, and deformation associated with micro-cracks. Decohesion on preferred cleavage planes in the solid, and subsequent effects of crack opening and sliding, are modeled. Explicit volume averaging over an element of material containing displacement discontinuities, in conjunction with the generalized divergence theorem, leads to an additive decomposition of the deformation gradient into contributions from thermoelasticity in the intact material and displacement jumps across micro-cracks. This additive decomposition is converted into a multiplicative decomposition, and the inelastic velocity gradient is then derived in terms of rates of crack extension, opening, and sliding on discrete planes in the microstructure. Elastic nonlinearity at high pressures, elastic moduli degradation from micro-cracking, dilatancy, pressure- and strain rate-sensitive yield, and energy dissipation from crack growth and sliding are formally addressed. Densities of micro-cracks are treated as internal state variables affecting the free energy of the solid. The mean fragment size of particles of failed material arises from geometric arguments in terms of the evolving average crack radius and crack density, with smaller fragments favored at higher loading rates. The model is applied to study granite, a hard polycrystalline rock, under various loading regimes. Dynamic stress–strain behavior and mean fragment sizes of failed material are realistically modeled. Possible inelastic anisotropy can be described naturally via prescription of cleavage planes of varying strengths.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a micromechanics-based damage evolution law was proposed by coupling two seemingly separated scientific fields, i.e., the propagation criterion for a single penny-shaped crack embedded in an infinite matrix subjected to remote stresses and stiffness estimates for representative material volumes comprising interacting microcracks.
Abstract: Strain-softening is the decline in stress at increasing strain. Although microcracking is a commonly accepted reason for strain-softening, the majority of theoretical developments involve macroscopic damage evolution laws [3], [2]. To improve this situation, we propose a micromechanics-based damage evolution law by coupling two seemingly separated scientific fields, i.e. by combining (i) the propagation criterion for a single penny-shaped crack embedded in an infinite matrix subjected to remote stresses (taken from linear-elastic fracture mechanics) and (ii) stiffness estimates for representative material volumes comprising interacting microcracks (taken from continuum micromechanics [4], [1]). This combination allows for modeling tensile strain-softening as a result of propagation of interacting microcracks, i.e. as a microstructural effect. The initial degree of damage, i.e. the initial microcrack size and the number of microcracks per unit volume, implies two different types of model-predicted tensile strain-softening behavior under strain control: (i) continuous strain-softening, which occurs in case of initial damage beyond a critical value, and (ii) an instantaneous stress drop at the peak load (”snap-back”), which occurs in case of initial damage below a critical value.

56 citations

Journal ArticleDOI
TL;DR: Despite the lower strength and toughness of the present nanofill composite, large nanoparticle clusters appear to be as effective at deflecting cracks and imparting toughening as solid particles, based on micromechanics observations.
Abstract: The fracture properties and micromechanisms of fracture for two commercial dental composites, one microhybrid (Filtek™Z250) and one nanofill (Filtek™Supreme Plus), were studied by measuring fracture resistance curves ( R -curves) using pre-cracked compact-tension specimens and by conducting both unnotched and double notched four point beam bending experiments. Four point bending experiments showed about 20% higher mean flexural strength of the microhybrid composite compared to the nanofill. Rising fracture resistance was observed over ∼1 mm of crack extension for both composites, and higher overall fracture resistance was observed for the microhybrid composite. Such fracture behavior was attributed to crack deflection and crack bridging toughening mechanisms that developed with crack extension, causing the toughness to increase. Despite the lower strength and toughness of the present nanofill composite, based on micromechanics observations, large nanoparticle clusters appear to be as effective at deflecting cracks and imparting toughening as solid particles. Thus, with further microstructural refinement, it should be possible to achieve a superior combination of aesthetic and mechanical performance using the nanocluster approach for dental composites.

56 citations

Journal ArticleDOI
TL;DR: Gologanu et al. as discussed by the authors presented two numerical approaches to model the material failure process by void growth and coalescence, and the discrete void approach provided a straightforward way for studying the effects of microstructure on fracture toughness.

56 citations

Journal ArticleDOI
TL;DR: In this article, a micromechanical modeling of induced anisotropic damage in brittle geomaterials is proposed based on a proper homogenization procedure by taking into account unilateral effects and interactions between microcracks.
Abstract: This paper is devoted to micromechanical modeling of induced anisotropic damage in brittle geomaterials. The formulation of the model is based on a proper homogenization procedure by taking into account unilateral effects and interactions between microcracks. The homogenization procedure is developed in the framework of Eshelby's inclusion solution and Ponte-Castaneda and Willis (J. Mech. Phys. Solids 1995; 43:1919–1951) estimate. The homogenization technique is combined with the thermodynamics framework at microscopic level for the determination of damage evolution law. A rigorous crack opening–closure transition condition is established and an energy-release-rate-based damage criterion is proposed. Computational aspects on the implementation of micromechanical model are also discussed. The proposed model is evaluated by comparing numerical predictions with experimental data for various laboratory tests on concrete. Parametric studies on unilateral effects and influences of microcracks interactions are finally performed and analyzed. Copyright © 2008 John Wiley & Sons, Ltd.

56 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Finite element method
178.6K papers, 3M citations
89% related
Microstructure
148.6K papers, 2.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022419
2021203
2020235
2019208
2018247