scispace - formally typeset
Search or ask a question
Topic

Micromechanics

About: Micromechanics is a research topic. Over the lifetime, 6000 publications have been published within this topic receiving 162635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a micromechanics-based elastoplastic damage model for quasi-brittle rocks under a compressive stress state is presented, where the plastic strain is considered to be related to frictional sliding along micro-cracks, and it is coupled inherently with damage evolution.

46 citations

01 Jan 2015
TL;DR: In this article, a computational micromechanics modeling approach is presented to predict the dynamic modulus of asphalt concrete mixtures using a finite element method combined with the micromachanical representative volume element of mixtures and laboratory tests that characterize the properties of individual mixture constituents.
Abstract: This paper presents a computational micromechanics modeling approach to predict the dynamic modulus of asphalt concrete mixtures. The modeling uses a finite element method combined with the micromechanical representative volume element (RVE) of mixtures and laboratory tests that characterize the properties of individual mixture constituents. The model treats asphalt concrete mixtures as heterogeneous with two primary phases: a linear viscoelastic fine aggregate matrix (FAM) phase and a linear elastic aggregate phase. The mechanical properties of each phase were experimentally obtained by conducting constitutive tests: oscillatory torsion tests for the viscoelastic FAM phase and quasistatic nanoindentation tests for the elastic aggregate particles. Material properties of each mixture phase were then used in the finite element simulation of two-dimensional mixture microstructures obtained from digital image processes of asphalt concrete mixtures. Model simulations were compared with the experimental dynamic...

45 citations

Journal ArticleDOI
TL;DR: Cohesive Zone Models (CZMs) are increasingly being used to simulate fracture and fragmentation processes in metallic, polymeric, ceramic materials, and composites thereof as discussed by the authors, and a key feature of this approach is to represent the micromechanics of the fracture processes through a unique load displacement relation.
Abstract: Cohesive Zone Models (CZMs) are increasingly being used to simulate fracture and fragmentation processes in metallic, polymeric, ceramic materials, and composites thereof. A key feature of this approach is to represent the micromechanics of the fracture processes through a unique load-displacement relation. Most researchers consider magnitude of the energy, in addition to one of the two parameters (cohesive strength or critical displacement), to define the cohesive zone characteristics, ignoring the actual form (shape) of the relationship. Some of our recent work [1–3] and the work of others [17] has clearly shown that the energetics of the fracture process not only depends on the inelastic constitutive equation of the bounding material, but also on the choice of the cohesive zone model. CZM represents the embodiment of different inelastic micromechanisms active in the fracture process zone (FPZ). Since the micromechanisms are fundamental material characteristics, the choice of the CZM should dep...

45 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Finite element method
178.6K papers, 3M citations
89% related
Microstructure
148.6K papers, 2.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022419
2021203
2020235
2019208
2018247