scispace - formally typeset
Search or ask a question
Topic

Micromechanics

About: Micromechanics is a research topic. Over the lifetime, 6000 publications have been published within this topic receiving 162635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the thermal conductivity of polymer composites containing nanofillers such as GNP (graphene nanoplatelet) and carbon black (CB) was investigated using experimental and theoretical approaches.
Abstract: The thermal conductivity of polymer composites containing nanofillers such as GNP (graphene nanoplatelet) and carbon black (CB) was investigated using experimental and theoretical approaches. We developed a fabrication method that allows different shapes and sizes of nanofillers to be highly dispersed in polymer resin. When the bulk and in-plane thermal conductivities of the fabricated composites were measured, they were found to increase rapidly as the GNP filler content increased. The in-plane thermal conductivity of composites with 20 wt.% GNP filler was found to reach a maximum value of 1.98 W/m K. The measured thermal conductivities were compared with the calculated values based on a micromechanics model where the waviness of nanofillers could be taken into account. The waviness of the incorporated GNP filler is an important physical factor that determines the thermal conductivity of composites and must be taken into consideration in theoretical calculations.

98 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role and applications of the Hill principle in modern micromechanics of industrial composite materials, including homogeneization of heterogeneous media, definition of effective properties and size effect in heterogeneous materials.
Abstract: We discuss the Hill principle's role and applications in modern micromechanics of industrial composite materials. Uniform boundary conditions, fundamental in micromechanics, are introduced as a class of Hill solutions. Mixed uniform conditions, basic for experimental testing, are analysed. Domains of application of the Hill principle are reviewed, like homogeneization of heterogeneous media, definition of effective properties and size effect in heterogeneous materials. Generalization of the Hill condition is realized for arbitrary materials, in particular for nonlinear inelastic composites with imperfect interfaces.

98 citations

Journal ArticleDOI
TL;DR: In this article, the effect of porosity on the transverse mechanical properties of unidirectional fiber-reinforced composites is studied by means of computational micromechanics.

98 citations

Journal ArticleDOI
TL;DR: In this article, a micromechanical model of a composite lamina material with fiber waviness is described and results are presented and discussed with regard to stiffness and strength predictions.
Abstract: In this paper, a micromechanical model of a composite lamina material with fiber waviness is described. Results are presented and discussed with regard to stiffness and strength predictions for composite lamina. A micromechanical model of a unit cell from periodically distributed unidirectional waved cylindrical fibers embedded within matrix is proposed to withdraw the different material stiffness parameters. Finite element analysis of the periodic unit cell characterizing the structural stiffness of the composite material is carried out to determine the average stress and strain components. The composite stress-strain relations are then employed to determine the stiffness parameters. Numerical results for a typical composite constituted of polymer matrix and carbon fibers in the form of periodically hexagonal packing and initially sinusoidal waviness are presented for different amplitude to wavelength ratios and a range of fiber volume fractions. The results reveal the presence of local periodic-antisymm...

98 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of chemical functionalization of a single-wall carbon nanotube in polyethylene composites on the bulk elastic properties are presented. And the results indicate that for the specific composite materials considered in this study most of the elastic stiffness constants of the composite with functionalized nanotubes are either less than or equal to those of the composites without functionalized Nanotubes.
Abstract: The effects of the chemical functionalization of a single-wall carbon nanotube in nanotube/polyethylene composites on the bulk elastic properties are presented. Constitutive equations are established for composites containing both functionalized and nonfunctionalized nanotubes using an equivalent-continuum modeling technique. The elastic properties of both composite systems are predicted for amorphous and crystalline polyethylene matrices with various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite materials considered in this study most of the elastic stiffness constants of the composite with functionalized nanotubes are either less than or equal to those of the composite without functionalized nanotubes.

97 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Finite element method
178.6K papers, 3M citations
89% related
Microstructure
148.6K papers, 2.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022419
2021203
2020235
2019208
2018247