scispace - formally typeset
Search or ask a question
Topic

Micromechanics

About: Micromechanics is a research topic. Over the lifetime, 6000 publications have been published within this topic receiving 162635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely.
Abstract: T he effect of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.

85 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relating to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste).
Abstract: Knowledge on the stresses in shotcrete tunnel shells is of great importance, as to assess their safety against severe cracking or failure. Estimation of these stresses from 3D optical displacement measurements requires shotcrete material models, which may preferentially consider variations in the water–cement and aggregate–cement ratios. Therefore, we employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relates to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste). Elasticity homogenization follows self-consistent schemes (at the cement paste level) and Mori–Tanaka estimates (at the shotcrete level), and stress peaks in the hydrates related to quasi-brittle material failure are estimated by second-order phase averages derived from the RVE-related elastic energy. The latter permits upscaling from the hydrate strength to the shotcrete strength. Experimental data from resonant frequency tests, ultrasonics tests, adiabatic tests, uniaxial compression tests, and nanoindentation tests suggest that shotcrete elasticity and strength can be reasonably predicted from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics model, when combined with 3D displacement measurements, predicts that a decrease of the water–cement ratio increases the safety of the shotcrete tunnel shell.

84 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional unit cell with glass fibre and epoxy polymer-matrix, representing the periodic microstructure of unidirectional fiber-reinforced composites, was considered to compute cure residual stress of fibre composites induced by chemical shrinkage of the epoxy resin and thermal cooling contraction of the whole fibre and resin system.
Abstract: Process-induced residual stress in fibre-reinforced thermoset polymer–matrix composites was analysed using a thermo-viscoelastic micromechanical model and the finite element method. A three-dimensional unit cell with glass fibre and epoxy polymer–matrix, representing the periodic microstructure of unidirectional fibre-reinforced composites, was considered to compute cure residual stress of fibre composites induced by chemical shrinkage of the epoxy resin and thermal cooling contraction of the whole fibre and resin system. The constitutive behaviour of the epoxy matrix was described by a cure and temperature-dependent viscoelastic material model. Compared to an elasticity solution, a reduction in residual stress was predicted due to the stress-relaxation caused by the viscoelastic behaviour of the epoxy matrix. Calculated residual stress shows strong dependency on the fibre volume fraction and fibre packing. After the cure process is complete, residual stress tends to relax to a constant value. The effect of residual stress on damage and failure of the model was also studied using the maximum stress failure criterion combined with a post-failure stiffness reduction technique. Damage onset, in terms of the location and the load level, was shown to be clearly influenced by the residual stress for both normal and shear loading. Initial and final failure envelopes, predicted for biaxial normal (longitudinal and transverse) loading and combined shear (longitudinal) and normal (transverse) loading, were shown to be shifted and contracted by the inclusion of residual stress. For final failure, residual stress was seen to have little effect on the load levels for longitudinal failure but greatly affected the load levels for transverse and shear failure. Residual stress could be detrimental or beneficial depending on the state of existing residual stress and the loading conditions.

84 citations

Journal ArticleDOI
TL;DR: In this article, the free enthalpy of the representative elementary volume composed of a matrix phase and randomly oriented and distributed penny-shaped microcracks is determined for the general case of multiple crack families.

84 citations

Journal ArticleDOI
TL;DR: In this paper, Lagoudas et al. developed a thermomechanical constitutive model for fully dense shape memory alloys (SMAs) developed in Part I [D.C. Lagoumas, P.B. Entchev, and P.C., Part II] of this two-part series is used in a micromechanical averaging scheme to establish a model for the effective mechanical behavior of porous shapememory alloys.

84 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
89% related
Finite element method
178.6K papers, 3M citations
89% related
Microstructure
148.6K papers, 2.2M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022419
2021203
2020235
2019208
2018247