scispace - formally typeset


About: Microphysics is a(n) research topic. Over the lifetime, 2357 publication(s) have been published within this topic receiving 90618 citation(s).
More filters

31 Mar 1980-
Abstract: Cloud physics has achieved such a voluminous literature over the past few decades that a significant quantitative study of the entire field would prove unwieldy. This book concentrates on one major aspect: cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles. Common practice has shown that one may distinguish among the following additional major aspects: cloud dynamics, which is concerned with the physics responsible for the macroscopic features of clouds; cloud electricity, which deals with the electrical structure of clouds and the electrification processes of cloud and precipitation particles; and cloud optics and radar meteorology, which describe the effects of electromagnetic waves interacting with clouds and precipitation. Another field intimately related to cloud physics is atmospheric chemistry, which involves the chemical composition of the atmosphere and the life cycle and characteristics of its gaseous and particulate constituents. In view of the natural interdependence of the various aspects of cloud physics, the subject of microphysics cannot be discussed very meaningfully out of context. Therefore, we have found it necessary to touch briefly upon a few simple and basic concepts of cloud dynamics and thermodynamics, and to provide an account of the major characteristics of atmospheric aerosol particles. We have also included a separate chapter on some of the effects of electric fields and charges on the precipitation-forming processes.

5,250 citations

Journal Article
Abstract: This study examines the performance of the Weather Research and Forecasting (WRF)-Single-Moment- Microphysics scheme (WSMMPs) with a revised ice-microphysics of the Hong et al. In addition to the simple (WRF Single-Moment 3-class Microphysics scheme; WSM3) and mixed-phase (WRF Single-Moment 5-class Microphysics scheme; WSM5) schemes of the Hong et al., a more complex scheme with the inclusion of graupel as another predictive variable (WRF Single-Moment 6-class Microphysics scheme; WSM6) was developed. The characteristics of the three categories of WSMMPs were examined for an idealized storm case and a heavy rainfall event over Korea. In an idealized thunderstorm simulation, the overall evolutionary features of the storm are not sensitive to the number of hydrometeors in the WSMMPs; however, the evolution of surface precipitation is significantly influenced by the complexity in microphysics. A simulation experiment for a heavy rainfall event indicated that the evolution of the simulated precipitation with the inclusion of graupel (WSM6) is similar to that from the simple (WSM3) and mixed-phase (WSM5) microphysics in a low-resolution grid; however, in a high-resolution grid, the amount of rainfall increases and the peak intensity becomes stronger as the number of hydrometeors increases.

2,047 citations

Journal ArticleDOI
Abstract: This progress report on the International Satellite Cloud Climatology Project (ISCCP) describes changes made to produce new cloud data products (D data), examines the evidence that these changes are improvements over the previous version (C data), summarizes some results, and discusses plans for the ISCCP through 2005. By late 1999 all datasets will be available for the period from July 1983 through December 1997. The most significant changes in the new D-series cloud datasets are 1) revised radiance calibrations to remove spurious changes in the long-term record, 2) increased cirrus detection sensitivity over land, 3) increased low-level cloud detection sensitivity in polar regions, 4) reduced biases in cirrus cloud properties using an ice crystal microphysics model in place of a liquid droplet microphysics model, and 5) increased detail about the variations of cloud properties. The ISCCP calibrations are now the most complete and self-consistent set of calibrations available for all the weather...

2,041 citations

Journal ArticleDOI
Abstract: A revised approach to cloud microphysical processes in a commonly used bulk microphysics parameterization and the importance of correctly representing properties of cloud ice are discussed. Several modifications are introduced to more realistically simulate some of the ice microphysical processes. In addition to the assumption that ice nuclei number concentration is a function of temperature, a new and separate assumption is developed in which ice crystal number concentration is a function of ice amount. Related changes in ice microphysics are introduced, and the impact of sedimentation of ice crystals is also investigated. In an idealized thunderstorm simulation, the distribution of simulated clouds and precipitation is sensitive to the assumptions in microphysical processes, whereas the impact of the sedimentation of cloud ice is small. Overall, the modifications introduced to microphysical processes play a role in significantly reducing cloud ice and increasing snow at colder temperatures and ...

2,024 citations

Network Information
Related Topics (5)

12K papers, 458.9K citations

89% related

3.6K papers, 140.1K citations

88% related
Cloud top

3K papers, 85.5K citations

88% related
Cloud physics

1.9K papers, 112K citations

88% related

15.7K papers, 586.6K citations

88% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Hugh Morrison

80 papers, 6.6K citations

Wojciech W. Grabowski

48 papers, 2K citations

Alexander Khain

34 papers, 2.6K citations

Wei-Kuo Tao

31 papers, 2.5K citations

Andrew J. Heymsfield

28 papers, 1K citations