scispace - formally typeset
Search or ask a question
Topic

Microprocessor complex

About: Microprocessor complex is a research topic. Over the lifetime, 158 publications have been published within this topic receiving 46468 citations. The topic is also known as: Microprocessor complex.


Papers
More filters
Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Abstract: Hundreds of small RNAs of approximately 22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of approximately 70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.

5,191 citations

Journal ArticleDOI
TL;DR: Small non-coding RNAs that function as guide molecules in RNA silencing are involved in nearly all developmental and pathological processes in animals and their dysregulation is associated with many human diseases.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins--Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.

4,256 citations

Journal ArticleDOI
TL;DR: It is demonstrated that human pre-miRNA nuclear export, and miRNA function, are dependent on Exportin-5, an additional cellular cofactor required for miRNA biogenesis and function.
Abstract: MicroRNAs (miRNAs) are initially expressed as long transcripts that are processed in the nucleus to yield approximately 65-nucleotide (nt) RNA hairpin intermediates, termed pre-miRNAs, that are exported to the cytoplasm for additional processing to yield mature, approximately 22-nt miRNAs. Here, we demonstrate that human pre-miRNA nuclear export, and miRNA function, are dependent on Exportin-5. Exportin-5 can bind pre-miRNAs specifically in vitro, but only in the presence of the Ran-GTP cofactor. Short hairpin RNAs, artificial pre-miRNA analogs used to express small interfering RNAs, also depend on Exportin-5 for nuclear export. Together, these findings define an additional cellular cofactor required for miRNA biogenesis and function.

3,049 citations

Journal ArticleDOI
11 Nov 2004-Nature
TL;DR: In vivo knock-down and in vitro reconstitution studies revealed that both components of this smaller complex, termed Microprocessor, are necessary and sufficient in mediating the genesis of miRNAs from the primary miRNA transcript.
Abstract: MicroRNAs (miRNAs) are a growing family of small non-protein-coding regulatory genes that regulate the expression of homologous target-gene transcripts. They have been implicated in the control of cell death and proliferation in flies, haematopoietic lineage differentiation in mammals, neuronal patterning in nematodes and leaf and flower development in plants. miRNAs are processed by the RNA-mediated interference machinery. Drosha is an RNase III enzyme that was recently implicated in miRNA processing. Here we show that human Drosha is a component of two multi-protein complexes. The larger complex contains multiple classes of RNA-associated proteins including RNA helicases, proteins that bind double-stranded RNA, novel heterogeneous nuclear ribonucleoproteins and the Ewing's sarcoma family of proteins. The smaller complex is composed of Drosha and the double-stranded-RNA-binding protein, DGCR8, the product of a gene deleted in DiGeorge syndrome. In vivo knock-down and in vitro reconstitution studies revealed that both components of this smaller complex, termed Microprocessor, are necessary and sufficient in mediating the genesis of miRNAs from the primary miRNA transcript.

2,729 citations

Journal ArticleDOI
02 Jan 2004-Science
TL;DR: Exposure of Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and its depletion by RNA interference results in reduced miRNA levels.
Abstract: MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III–like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate–dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro. Thus, Exp5 is key to miRNA biogenesis and may help coordinate nuclear and cytoplasmic processing steps.

2,714 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
81% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
RNA
111.6K papers, 5.4M citations
81% related
Signal transduction
122.6K papers, 8.2M citations
78% related
Cellular differentiation
90.9K papers, 6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
20214
202012
20198
201814
20178