scispace - formally typeset
Search or ask a question
Topic

Microstrip

About: Microstrip is a research topic. Over the lifetime, 40132 publications have been published within this topic receiving 468190 citations. The topic is also known as: Microstripline.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
C.P. Wen1
05 May 1969
TL;DR: In this article, the coplanar waveguide is used for non-reciprocal magnetic device applications because of the built-in circularly polarized magnetic vector at the air-dielectric boundary between the conductors.
Abstract: A coplanar waveguide consists of a strip of thin metallic film on the surface of a dielectric slab with two ground electrodes running adjacent and parallel to the strip. This novel transmission line readily lends itself to nonreciprocal magnetic device applications because of the built-in circularly polarized magnetic vector at the air-dielectric boundary between the conductors. Practical applications of the coplanar waveguide have been experimentally demonstrated by measurements on resonant isolators and differential phase shifters fabricated on low-loss dielectric substrates with high dielectric constants. Calculations have been made for the characteristic impedance, phase velocity, and ripper bound of attenuation of a transmission line whose electrodes are all on one side of a dielectric substrate. These calculations are in good agreement with preliminary experimental results. The coplanar configuration of the transmission system not only permits easy shunt connection of external elements in hybrid integrated circuits, but also adapts well to the fabrication of monolithic integrated systems. Low-loss dielectric substrates with high dielectric constants may be employed to reduce the longitudinal dimension of the integrated circuits because the characteristic impedance of the coplanar waveguide is relatively independent of the substrate thickness; this may be of vital importance for Iow-frequency integrated microwave systems.

910 citations

Journal ArticleDOI
TL;DR: In this article, a cross-coupled planar microwave filter using coupled microstrip square open-loop resonators is proposed, and a method for the rigorous calculation of the coupling coefficients of three basic coupling structures encountered in this type of filter is developed.
Abstract: A new type of cross-coupled planar microwave filter using coupled microstrip square open-loop resonators is proposed. A method for the rigorous calculation of the coupling coefficients of three basic coupling structures encountered in this type of filter is developed. Simple empirical models are derived for estimation of the coupling coefficients. Experiments are performed to verify the theory. A four-pole elliptic function filter of this type is designed and fabricated. Both the theoretical and experimental performance is presented.

874 citations

Journal ArticleDOI
TL;DR: A new technique for feeding printed antennas is described in this paper, where a microstrip antenna on one substrate is coupled to a microstripline feed on another parallel substrate through an aperture in the ground plane which separates the two substrates.
Abstract: A new technique for feeding printed antennas is described A microstrip antenna on one substrate is coupled to a microstripline feed on another parallel substrate through an aperture in the ground plane which separates the two substrates A simple theory explaining the coupling mechanism is presented, as well as measurements of a prototype aperture-fed antenna

860 citations

Journal ArticleDOI
TL;DR: In this article, the photonic bandgap (PBG) structure for microwave integrated circuits is presented, which is a two-dimensional square lattice with each element consisting of a metal pad and four connecting branches.
Abstract: This paper presents a novel photonic bandgap (PBG) structure for microwave integrated circuits. This new PBG structure is a two-dimensional square lattice with each element consisting of a metal pad and four connecting branches. Experimental results of a microstrip on a substrate with the PEG ground plane displays a broad stopband, as predicted by finite-difference time-domain simulations. Due to the slow-wave effect generated by this unique structure, the period of the PBG lattice is only 0.1/spl lambda//sub 0/ at the cutoff frequency, resulting in the most compact PEG lattice ever achieved. In the passband, the measured slow-wave factor (/spl beta//k/sub 0/) is 1.2-2.4 times higher and insertion loss is at the same level compared to a conventional 50-/spl Omega/ line. This uniplanar compact PBG (UC-PBG) structure can be built using standard planar fabrication techniques without any modification. Several application examples have also been demonstrated, including a nonleaky conductor-backed coplanar waveguide and a compact spurious-free bandpass filter. This UC-PBG structure should find wide applications for high-performance and compact circuit components in microwave and millimeter-wave integrated circuits.

831 citations


Network Information
Related Topics (5)
Dipole antenna
38K papers, 513.8K citations
96% related
Microstrip antenna
43.9K papers, 604.4K citations
96% related
Antenna measurement
39.6K papers, 494.4K citations
96% related
Antenna (radio)
208K papers, 1.8M citations
96% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023511
20221,435
20211,159
20201,813
20192,323
20182,408