scispace - formally typeset



About: Microstructure is a(n) research topic. Over the lifetime, 148615 publication(s) have been published within this topic receiving 2241598 citation(s).

More filters
01 Dec 1960
Abstract: INTRODUCTION. Ceramic Processes and Products. CHARACTERISTICS OF CERAMIC SOLIDS. Structure of Crystals. Structure of Glasses. Structural Imperfections. Surfaces, Interfaces, and Grain Boundaries. Atom Mobility. DEVELOPMENT OF MICROSTRUCTURE IN CERAMICS. Ceramic Phase Equilibrium Diagrams. Phase Transformation, Glass Formation and Glass--Ceramics. Reactions with and between Solids. Grain Growth. Sintering and Vitrification. Microstructure of Ceramics. PROPERTIES OF CERAMICS. Thermal Properties. Optical Properties. Plastic Deformation, Viscous Flow and Creep. Elasticity, Anelasticity and Strength. Thermal and Compositional Stresses. Electrical Conductivity. Dielectric Properties. Magnetic Properties.

6,594 citations

Journal ArticleDOI
Abstract: The magnetic properties of Fe‐Si‐B‐M (M: additives) alloys prepared by annealing amorphous alloys made by the single roller method over their crystallization temperature have been investigated for development of new Fe‐based soft magnetic alloys. Excellent soft magnetic properties were obtained by adding the two elements Cu and Nb to Fe‐Si‐B alloys. It was found that these new alloys, called ‘‘FINEMET,’’ have an ultrafine grain structure composed of bcc Fe solid solution. They are suitable for many kinds of magnetic components such as saturable reactors, choke coils, and transformers, because they have superior soft magnetic properties and a high saturation flux density, and because different types of B‐H hysteresis loops are obtained by magnetic field annealing.

2,759 citations

Journal ArticleDOI
31 Oct 2002-Nature
TL;DR: A thermomechanical treatment of Cu is described that results in a bimodal grain size distribution, with micrometre-sized grains embedded inside a matrix of nanocrystalline and ultrafine (<300 nm) grains, which impart high strength, as expected from an extrapolation of the Hall–Petch relationship.
Abstract: Nanocrystalline metals--with grain sizes of less than 100 nm--have strengths exceeding those of coarse-grained and even alloyed metals, and are thus expected to have many applications. For example, pure nanocrystalline Cu (refs 1-7) has a yield strength in excess of 400 MPa, which is six times higher than that of coarse-grained Cu. But nanocrystalline materials often exhibit low tensile ductility at room temperature, which limits their practical utility. The elongation to failure is typically less than a few per cent; the regime of uniform deformation is even smaller. Here we describe a thermomechanical treatment of Cu that results in a bimodal grain size distribution, with micrometre-sized grains embedded inside a matrix of nanocrystalline and ultrafine (<300 nm) grains. The matrix grains impart high strength, as expected from an extrapolation of the Hall-Petch relationship. Meanwhile, the inhomogeneous microstructure induces strain hardening mechanisms that stabilize the tensile deformation, leading to a high tensile ductility--65% elongation to failure, and 30% uniform elongation. We expect that these results will have implications in the development of tough nanostructured metals for forming operations and high-performance structural applications including microelectromechanical and biomedical systems.

2,216 citations

Journal ArticleDOI
Abstract: Selective laser melting (SLM) is an additive manufacturing technique in which functional, complex parts can be created directly by selectively melting layers of powder. This process is characterized by highly localized high heat inputs during very short interaction times and will therefore significantly affect the microstructure. In this research, the development of the microstructure of the Ti–6Al–4V alloy processed by SLM and the influence of the scanning parameters and scanning strategy on this microstructure are studied by light optical microscopy. The martensitic phase is present, and due to the occurrence of epitaxial growth, elongated grains emerge. The direction of these grains is directly related to the process parameters. At high heat inputs it was also found that the intermetallic phase Ti3Al is precipitated during the process.

1,729 citations

14 Feb 1995
Abstract: Preface to the Second Edition. Preface to the First Edition. Acronyms, Abbreviations and Symbols. 1 Materials Used for Spraying. 1.1 Methods of Powders Production. 1.1.1 Atomization. 1.1.2 Sintering or Fusion. 1.1.3 Spray Drying (Agglomeration). 1.1.4 Cladding. 1.1.5 Mechanical Alloying (Mechanofusion). 1.1.6 Self-propagating High-temperature Synthesis (SHS). 1.1.7 Other Methods. 1.2 Methods of Powders Characterization. 1.2.1 Grain Size. 1.2.2 Chemical and Phase Composition. 1.2.3 Internal and External Morphology. 1.2.4 High-temperature Behaviour. 1.2.5 Apparent Density and Flowability. 1.3 Feeding, Transport and Injection of Powders. 1.3.1 Powder Feeders. 1.3.2 Transport of Powders. 1.3.3 Injection of Powders. References. 2 Pre-Spray Treatment. 2.1 Introduction. 2.2 Surface Cleaning. 2.3 Substrate Shaping. 2.4 Surface Activation. 2.5 Masking. References. 3 Thermal Spraying Techniques. 3.1 Introduction. 3.2 Flame Spraying (FS). 3.2.1 History. 3.2.2 Principles. 3.2.3 Process Parameters. 3.2.4 Coating Properties. 3.3 Atmospheric Plasma Spraying (APS). 3.3.1 History. 3.3.2 Principles. 3.3.3 Process Parameters. 3.3.4 Coating Properties. 3.4 Arc Spraying (AS). 3.4.1 Principles. 3.4.2 Process Parameters. 3.4.3 Coating Properties. 3.5 Detonation-Gun Spraying (D-GUN). 3.5.1 History. 3.5.2 Principles. 3.5.3 Process Parameters. 3.5.4 Coating Properties. 3.6 High-Velocity Oxy-Fuel (HVOF) Spraying. 3.6.1 History. 3.6.2 Principles. 3.6.3 Process Parameters. 3.6.4 Coating Properties. 3.7 Vacuum Plasma Spraying (VPS). 3.7.1 History. 3.7.2 Principles. 3.7.3 Process Parameters. 3.7.4 Coating Properties. 3.8 Controlled-Atmosphere Plasma Spraying (CAPS). 3.8.1 History. 3.8.2 Principles. 3.8.3 Process Parameters. 3.8.4 Coating Properties. 3.9 Cold-Gas Spraying Method (CGSM). 3.9.1 History. 3.9.2 Principles. 3.9.3 Process Parameters. 3.9.4 Coating Properties. 3.10 New Developments in Thermal Spray Techniques. References. 4 Post-Spray Treatment. 4.1 Heat Treatment. 4.1.1 Electromagnetic Treatment. 4.1.2 Furnace Treatment. 4.1.3 Hot Isostatic Pressing (HIP). 4.1.4 Combustion Flame Re-melting. 4.2 Impregnation. 4.2.1 Inorganic Sealants. 4.2.2 Organic Sealants. 4.3 Finishing. 4.3.1 Grinding. 4.3.2 Polishing and Lapping. References. 5 Physics and Chemistry of Thermal Spraying. 5.1 Jets and Flames. 5.1.1 Properties of Jets and Flames. 5.2 Momentum Transfer between Jets or Flames and Sprayed Particles. 5.2.1 Theoretical Description. 5.2.2 Experimental Determination of Sprayed Particles' Velocities. 5.2.3 Examples of Experimental Determination of Particles Velocities. 5.3 Heat Transfer between Jets or Flames and Sprayed Particles. 5.3.1 Theoretical Description. 5.3.2 Methods of Particles' Temperature Measurements. 5.4 Chemical Modification at Flight of Sprayed Particles. References. 6 Coating Build-Up. 6.1 Impact of Particles. 6.1.1 Particle Deformation. 6.1.2 Particle Temperature at Impact. 6.1.3 Nucleation, Solidification and Crystal Growth. 6.1.4 Mechanisms of Adhesion. 6.2 Coating Growth. 6.2.1 Mechanism of Coating Growth. 6.2.2 Temperature of Coatings at Spraying. 6.2.3 Generation of Thermal Stresses at Spraying. 6.2.4 Coatings Surfaces. 6.3 Microstructure of the Coatings. 6.3.1 Crystal Phase Composition. 6.3.2 Coatings' Inhomogeneity. 6.3.3 Final Microstructure of Sprayed Coatings. 6.4 Thermally Sprayed Composites. 6.4.1 Classification of Sprayed Composites. 6.4.2 Composite Coating Manufacturing. References. 7 Methods of Coatings' Characterization. 7.1 Methods of Microstructure Characterization. 7.1.1 Methods of Chemical Analysis. 7.1.2 Crystallographic Analyses. 7.1.3 Microstructure Analyses. 7.1.4 Other Applied Methods. 7.2 Mechanical Properties of Coatings. 7.2.1 Adhesion Determination. 7.2.2 Hardness and Microhardness. 7.2.3 Elastic Moduli, Strength and Ductility. 7.2.4 Properties Related to Mechanics of Coating Fracture. 7.2.5 Friction and Wear. 7.2.6 Residual Stresses. 7.3 Physical Properties of Coatings. 7.3.1 Thickness, Porosity and Density. 7.3.2 Thermophysical Properties. 7.3.3 Thermal Shock Resistance. 7.4 Electrical Properties of Coatings. 7.4.1 Electrical Conductivity. 7.4.2 Properties of Dielectrics. 7.4.3 Electron Emission from Surfaces. 7.5 Magnetic Properties of Coatings. 7.6 Chemical Properties of Coatings. 7.6.1 Aqueous Corrosion. 7.6.2 Hot-gas Corrosion. 7.7 Characterization of Coatings' Quality. 7.7.1 Acoustical Methods. 7.7.2 Thermal Methods. References. 8 Properties of Coatings. 8.1 Design of Experiments. 8.2 Mechanical Properties. 8.2.1 Hardness and Microhardness. 8.2.2 Tensile Adhesion Strength. 8.2.3 Elastic Moduli, Strengths and Fracture Toughness. 8.2.4 Friction and Wear. 8.3 Thermophysical Properties. 8.3.1 Thermal Conductivity and Diffusivity. 8.3.2 Specific Heat. 8.3.3 Thermal Expansion. 8.3.4 Emissivity. 8.3.5 Thermal Shock Resistance. 8.4 Electric Properties. 8.4.1 Properties of Conductors. 8.4.2 Properties of Resistors. 8.4.3 Properties of Dielectrics. 8.4.4 Electric Field Emitters. 8.4.5 Properties of Superconductors. 8.5 Magnetic Properties. 8.5.1 Soft Magnets. 8.5.2 Hard Magnets. 8.6 Optical Properties. 8.6.1 Decorative Coatings. 8.6.2 Optically Functional Coatings. 8.7 Corrosion Resistance. 8.7.1 Aqueous Corrosion. 8.7.2 Hot-medium Corrosion. References. 9 Applications of Coatings. 9.1 Aeronautical and Space Industries. 9.1.1 Aero-engines. 9.1.2 Landing-gear Components. 9.1.3 Rocket Thrust-chamber Liners. 9.2 Agroalimentary Industry. 9.3 Automobile Industry. 9.4 Ceramics Industry. 9.4.1 Free-standing Samples. 9.4.2 Brick-Clay Extruders. 9.4.3 Crucibles to Melt Oxide Ceramics. 9.4.4 Ceramic Membranes. 9.5 Chemical Industry. 9.5.1 Photocatalytic Surfaces. 9.5.2 Tools in Petrol Search Installations. 9.5.3 Vessels in Chemical Refineries. 9.5.4 Gas-well Tubing. 9.5.5 Polymeric Coatings on Pipeline Components. 9.5.6 Ozonizer Tubes. 9.6 Civil Engineering. 9.7 Decorative Coatings. 9.8 Electronics Industry. 9.8.1 Heaters. 9.8.2 Sources for Sputtering. 9.8.3 Substrates for Hybrid Microelectronics. 9.8.4 Capacitor Electrodes. 9.8.5 Conductor Paths for Hybrid Electronics. 9.8.6 Microwave Integrated Circuits. 9.9 Energy Generation and Transport. 9.9.1 Solid-oxide Fuel Cell (SOFCs). 9.9.2 Thermopile Devices for Thermoelectric Generators. 9.9.3 Boilers in Power-generation Plants. 9.9.4 Stationary Gas Turbines. 9.9.5 Hydropower Stations. 9.9.6 MHD Generators. 9.10 Iron and Steel Industries. 9.10.1 Continuous Annealing Line (CAL). 9.10.2 Continuous Galvanizing Section. 9.10.3 Stave Cooling Pipes. 9.11 Machine Building Industry. 9.12 Medicine. 9.13 Mining Industry. 9.14 Non-ferrous Metal Industry. 9.14.1 Hot-extrusion Dies. 9.14.2 Protective Coatings against Liquid Copper. 9.14.3 Protective Coatings against Liquid Zirconium. 9.15 Nuclear Industry. 9.15.1 Components of Tokamak Device. 9.15.2 Magnetic-fusion Energy Device. 9.16 Paper Industry. 9.16.1 Dryers. 9.16.2 Gloss Calender Rolls. 9.16.3 Tubing in Boilers. 9.17 Printing and Packaging Industries. 9.17.1 Corona Rolls. 9.17.2 Anilox Rolls. 9.18 Shipbuiding and Naval Industries. 9.18.1 Marine Gas-turbine Engines. 9.18.2 Steam Valve Stems. 9.18.3 Non-skid Helicopter Flight Deck. References. Index.

1,595 citations

Network Information
Related Topics (5)

379.8K papers, 3.1M citations

91% related
Amorphous solid

117K papers, 2.2M citations

91% related
Ultimate tensile strength

129.2K papers, 2.1M citations

90% related
Thin film

275.5K papers, 4.5M citations

90% related

213.4K papers, 3.6M citations

88% related
No. of papers in the topic in previous years