scispace - formally typeset
Search or ask a question

Showing papers on "MIMO published in 2013"


Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations


Journal ArticleDOI
TL;DR: This paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas.
Abstract: Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive coupling, magnetic resonate coupling, and electromagnetic (EM) radiation, for short-/mid-/long-range applications, respectively. In this paper, we consider the EM or radio signal enabled WPT in particular. Since radio signals can carry energy as well as information at the same time, a unified study on simultaneous wireless information and power transfer (SWIPT) is pursued. Specifically, this paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas. Two scenarios are examined, in which the information receiver and energy receiver are separated and see different MIMO channels from the transmitter, or co-located and see the identical MIMO channel from the transmitter. For the case of separated receivers, we derive the optimal transmission strategy to achieve different tradeoffs for maximal information rate versus energy transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. For the case of co-located receivers, we show an outer bound for the achievable R-E region due to the potential limitation that practical energy harvesting receivers are not yet able to decode information directly. Under this constraint, we investigate two practical designs for the co-located receiver case, namely time switching and power splitting, and characterize their achievable R-E regions in comparison to the outer bound.

2,595 citations


Journal ArticleDOI
TL;DR: How many antennas per UT are needed to achieve η% of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF and BF to achieve the performance of minimum mean-square error (MMSE) detection and regularized zero-forcing (RZF), respectively are derived.
Abstract: We consider the uplink (UL) and downlink (DL) of non-cooperative multi-cellular time-division duplexing (TDD) systems, assuming that the number N of antennas per base station (BS) and the number K of user terminals (UTs) per cell are large. Our system model accounts for channel estimation, pilot contamination, and an arbitrary path loss and antenna correlation for each link. We derive approximations of achievable rates with several linear precoders and detectors which are proven to be asymptotically tight, but accurate for realistic system dimensions, as shown by simulations. It is known from previous work assuming uncorrelated channels, that as N→∞ while K is fixed, the system performance is limited by pilot contamination, the simplest precoders/detectors, i.e., eigenbeamforming (BF) and matched filter (MF), are optimal, and the transmit power can be made arbitrarily small. We analyze to which extent these conclusions hold in the more realistic setting where N is not extremely large compared to K. In particular, we derive how many antennas per UT are needed to achieve η% of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF and BF to achieve the performance of minimum mean-square error (MMSE) detection and regularized zero-forcing (RZF), respectively.

2,433 citations


Journal ArticleDOI
TL;DR: JSDM achieves significant savings both in the downlink training and in the CSIT uplink feedback, thus making the use of large antenna arrays at the base station potentially suitable also for frequency division duplexing systems, for which uplink/downlink channel reciprocity cannot be exploited.
Abstract: We propose joint spatial division and multiplexing (JSDM), an approach to multiuser MIMO downlink that exploits the structure of the correlation of the channel vectors in order to allow for a large number of antennas at the base station while requiring reduced-dimensional channel state information at the transmitter (CSIT). JSDM achieves significant savings both in the downlink training and in the CSIT uplink feedback, thus making the use of large antenna arrays at the base station potentially suitable also for frequency division duplexing (FDD) systems, for which uplink/downlink channel reciprocity cannot be exploited. In the proposed scheme, the multiuser MIMO downlink precoder is obtained by concatenating a prebeamforming matrix, which depends only on the channel second-order statistics, with a classical multiuser precoder, based on the instantaneous knowledge of the resulting reduced dimensional “effective” channel matrix. We prove a simple condition under which JSDM incurs no loss of optimality with respect to the full CSIT case. For linear uniformly spaced arrays, we show that such condition is approached in the large number of antennas limit. For this case, we use Szego's asymptotic theory of Toeplitz matrices to show that a DFT-based prebeamforming matrix is near-optimal, requiring only coarse information about the users angles of arrival and angular spread. Finally, we extend these ideas to the case of a 2-D base station antenna array, with 3-D beamforming, including multiple beams in the elevation angle direction. We provide guidelines for the prebeamforming optimization and calculate the system spectral efficiency under proportional fairness and max-min fairness criteria, showing extremely attractive performance. Our numerical results are obtained via asymptotic random matrix theory, avoiding lengthy Monte Carlo simulations and providing accurate results for realistic (finite) number of antennas and users.

1,347 citations


Journal ArticleDOI
TL;DR: In this article, the problem of channel estimation in multi-cell interference-limited cellular networks is addressed by enabling a low-rate coordination between cells during the channel estimation phase itself.
Abstract: This paper addresses the problem of channel estimation in multi-cell interference-limited cellular networks. We consider systems employing multiple antennas and are interested in both the finite and large-scale antenna number regimes (so-called "massive MIMO"). Such systems deal with the multi-cell interference by way of per-cell beamforming applied at each base station. Channel estimation in such networks, which is known to be hampered by the pilot contamination effect, constitutes a major bottleneck for overall performance. We present a novel approach which tackles this problem by enabling a low-rate coordination between cells during the channel estimation phase itself. The coordination makes use of the additional second-order statistical information about the user channels, which are shown to offer a powerful way of discriminating across interfering users with even strongly correlated pilot sequences. Importantly, we demonstrate analytically that in the large-number-of-antennas regime, the pilot contamination effect is made to vanish completely under certain conditions on the channel covariance. Gains over the conventional channel estimation framework are confirmed by our simulations for even small antenna array sizes.

1,138 citations


Journal ArticleDOI
TL;DR: A framework for physically-accurate computational modeling and analysis of CAP-MIMO is presented, and measurement results on a DLA-based prototype for multimode line-of-sight communication are reported.
Abstract: Millimeter-wave wireless systems are emerging as a promising technology for meeting the exploding capacity requirements of wireless communication networks. Besides large bandwidths, small wavelengths at mm-wave lead to a high-dimensional spatial signal space, that can be exploited for significant capacity gains through high-dimensional multiple-input multiple-output (MIMO) techniques. In conventional MIMO approaches, optimal performance requires prohibitively high transceiver complexity. By combining the concept of beamspace MIMO communication with a hybrid analog-digital transceiver, continuous aperture phased (CAP) MIMO achieves near-optimal performance with dramatically lower complexity. This paper presents a framework for physically-accurate computational modeling and analysis of CAP-MIMO, and reports measurement results on a DLA-based prototype for multimode line-of-sight communication. The model, based on a critically sampled system representation, is used to demonstrate the performance gains of CAP-MIMO over state-of-the-art designs at mm-wave. For example, a CAP-MIMO system can achieve a spectral efficiency of 10-20 bits/s/Hz with a 17-31 dB power advantage over state-of-the-art, corresponding to a data rate of 10-200 Gbps with 1-10 GHz system bandwidth. The model is refined to analyze critical sources of power loss in an actual multimode system. The prototype-based measurement results closely follow the theoretical predictions, validating CAP-MIMO theory, and illustrating the utility of the model.

748 citations


Journal ArticleDOI
TL;DR: This work compares the two most prominent linear pre-coders, conjugate beamforming and zero-forcing, with respect to net spectral-efficiency and radiated energy-efficiency in a simplified single-cell scenario where propagation is governed by independent Rayleigh fading, and where channel-state information acquisition and data transmission are both performed during a short coherence interval.
Abstract: Large-Scale Antenna Systems (LSAS) is a form of multi-user MIMO technology in which unprecedented numbers of antennas serve a significantly smaller number of autonomous terminals. We compare the two most prominent linear pre-coders, conjugate beamforming and zero-forcing, with respect to net spectral-efficiency and radiated energy-efficiency in a simplified single-cell scenario where propagation is governed by independent Rayleigh fading, and where channel-state information (CSI) acquisition and data transmission are both performed during a short coherence interval. An effective-noise analysis of the pre-coded forward channel yields explicit lower bounds on net capacity which account for CSI acquisition overhead and errors as well as the sub-optimality of the pre-coders. In turn the bounds generate trade-off curves between radiated energy-efficiency and net spectral-efficiency. For high spectral-efficiency and low energy-efficiency zero-forcing outperforms conjugate beamforming, while at low spectral-efficiency and high energy-efficiency the opposite holds. Surprisingly, in an optimized system, the total LSAS-critical computational burden of conjugate beamforming may be greater than that of zero-forcing. Conjugate beamforming may still be preferable to zero-forcing because of its greater robustness, and because conjugate beamforming lends itself to a de-centralized architecture and de-centralized signal processing.

729 citations


Journal ArticleDOI
TL;DR: It is found that power imbalance can substantially improve the performance of both SMP and SM as it reduces channel correlation, and a framework to analytically approximate the bit error ratios of these schemes is developed.
Abstract: In this paper, we compare the performance of multiple-input-multiple-output (MIMO) techniques applied to indoor optical wireless communications (OWC) assuming line-ofsight (LOS) channel conditions Specifically, several 4 × 4 setups with different transmitter spacings and different positions of the receiver array are considered The following MIMO algorithms are considered: Repetition Coding (RC), Spatial Multiplexing (SMP) and Spatial Modulation (SM) Particularly, we develop a framework to analytically approximate the bit error ratios (BERs) of these schemes and verify the theoretical bounds by simulations The results show that due to diversity gains, RC is robust to various transmitter-receiver alignments However, as RC does not provide spatial multiplexing gains, it requires large signal constellation sizes to enable high spectral efficiencies In contrast, SMP enables high data rates by exploiting multiplexing gains In order to provide these gains, SMP needs sufficiently low channel correlation SM is a combined MIMO and digital modulation technique We show that SM is more robust to high channel correlation compared to SMP, while enabling larger spectral efficiency compared to RC Moreover, we investigate the effect of induced power imbalance between the multiple transmitters It is found that power imbalance can substantially improve the performance of both SMP and SM as it reduces channel correlation In this context, we also show that blocking some of the links is an acceptable method to reduce channel correlation Even though the blocking diminishes the received energy, it outweighs this degradation by providing improved channel conditions for SMP and SM For example, blocking 4 of the 16 links of the 4 × 4 setup improves the BER performance of SMP by more than 20 dB, while the effective signal to noise ratio (SNR) is reduced by about 2 dB due to the blocking Therefore, MIMO techniques can provide gains even under LOS conditions which provide only little channel differences

554 citations


Proceedings ArticleDOI
01 Nov 2013
TL;DR: System-level performance of NOMA is provided taking into account practical aspects of the cellular system and some of the key parameters and functionalities of the LTE radio interface such as adaptive modulation and coding (AMC) and frequency-domain scheduling.
Abstract: As a promising downlink multiple access scheme for future radio access (FRA), this paper discusses the concept and practical considerations of non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) at the receiver side. The goal is to clarify the benefits of NOMA over orthogonal multiple access (OMA) such as OFDMA adopted by Long-Term Evolution (LTE). Practical considerations of NOMA, such as multi-user power allocation, signalling overhead, SIC error propagation, performance in high mobility scenarios, and combination with multiple input multiple output (MIMO) are discussed. Using computer simulations, we provide system-level performance of NOMA taking into account practical aspects of the cellular system and some of the key parameters and functionalities of the LTE radio interface such as adaptive modulation and coding (AMC) and frequency-domain scheduling. We show under multiple configurations that the system-level performance achieved by NOMA is higher by more than 30% compared to OMA.

531 citations


Journal ArticleDOI
TL;DR: It is proved that under the proposed protocols, the secrecy outage probability and the ε-outage secrecy capacity improve with increasing NA, as well as the secrecy diversity order and the secrecy array gain.
Abstract: We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with NA antennas at the transmitter, NB antennas at the receiver, and NE antennas at the eavesdropper. We focus on the practical scenario where the transmitter does not have any channel state information (CSI) of the eavesdropper's channel. The transmitter selects a single antenna that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. The receiver and the eavesdropper employ either maximal-ratio combining (MRC) or selection combining (SC) to combine the received signals. For the proposed protocols, we derive new closed-form expressions for the probability of non-zero secrecy capacity. We consider Nakagami-m fading with non-identical fading parameters of the main channel, mB, and of the eavesdropper's channel, mE. Next, we derive new closed-form expressions for the exact secrecy outage probability, based on which the e-outage secrecy capacity is characterized. Based on the exact expressions, we derive the asymptotic secrecy outage probability which accurately reveals the secrecy diversity order and the secrecy array gain. We confirm that the proposed protocols achieve identical secrecy diversity orders of NANBmB. An interesting conclusion is reached that this diversity order is independent of NE and mE. Furthermore, we prove that under the proposed protocols, the secrecy outage probability and the e-outage secrecy capacity improve with increasing NA.

424 citations


Journal ArticleDOI
Young-Han Nam1, Boon Loong Ng1, Krishna Sayana1, Yang Li1, Jianzhong Zhang1, Younsun Kim1, Ju-Ho Lee1 
TL;DR: The simulation results show that the proposed FD-MIMO system with 32 antenna ports achieves 2-3.6 times cell average throughput gain and 1-5 times cell edge throughput gain compared to the 4G LTE system of two antenna ports at the BS.
Abstract: This article considers a practical implementation of massive MIMO systems [1]. Although the best performance can be achieved when a large number of active antennas are placed only in the horizontal domain, BS form factor limitation often makes horizontal array placement infeasible. To cope with this limitation, this article introduces full-dimension MIMO (FD-MIMO) cellular wireless communication system, where active antennas are placed in a 2D grid at BSs. For analysis of the FD-MIMO systems, a 3D spatial channel model is introduced, on which system-level simulations are conducted. The simulation results show that the proposed FD-MIMO system with 32 antenna ports achieves 2-3.6 times cell average throughput gain and 1.5-5 times cell edge throughput gain compared to the 4G LTE system of two antenna ports at the BS.

Journal ArticleDOI
TL;DR: This work considers multicell multiuser MIMO systems with a very large number of antennas at the base station (BS) and shows that when the number of BS antennas goes to infinity, the system performance under a finite-dimensional channel model with P angular bins is the same as the performance under an uncorrelated channel models with P antennas.
Abstract: We consider multicell multiuser MIMO systems with a very large number of antennas at the base station (BS). We assume that the channel is estimated by using uplink training. We further consider a physical channel model where the angular domain is separated into a finite number of distinct directions. We analyze the so-called pilot contamination effect discovered in previous work, and show that this effect persists under the finite-dimensional channel model that we consider. In particular, we consider a uniform array at the BS. For this scenario, we show that when the number of BS antennas goes to infinity, the system performance under a finite-dimensional channel model with P angular bins is the same as the performance under an uncorrelated channel model with P antennas. We further derive a lower bound on the achievable rate of uplink data transmission with a linear detector at the BS. We then specialize this lower bound to the cases of maximum-ratio combining (MRC) and zero-forcing (ZF) receivers, for a finite and an infinite number of BS antennas. Numerical results corroborate our analysis and show a comparison between the performances of MRC and ZF in terms of sum-rate.

Proceedings ArticleDOI
01 Dec 2013
TL;DR: The proposed reduced-complexity multiuser precoders provide a near-optimal route for achieving multi-Gigabit/s sum rates in mm-wave MU-MIMO networks with the lowest transceiver complexity.
Abstract: Millimeter-wave (mm-wave) systems operating from 30–300GHz provide a unique opportunity for meeting the exploding capacity demands on wireless networks. In addition to orders-of-magnitude larger bandwidths, the small wavelengths at mm-wave enable high-dimensional multiple-input multiple-output (MIMO) operation. However, fully exploiting the advantages of mm-wave requires prohibitively high transceiver complexity when using conventional MIMO techniques. In this paper we propose and analyze the sum capacity of several linear, reduced-complexity multiuser MIMO (MU-MIMO) precoders that exploit the concept of beamspace MIMO (B-MIMO) communication - multiplexing data onto orthogonal spatial beams that serve as approximate channel eigenfunctions. Due to quasi-optical propagation at mm-wave, MIMO channels are expected to be low-rank and the low channel rank is manifested in the sparsity of the beamspace channel matrix. This enables near-optimal rank and complexity reduction via the concept of multi-beam selection. We present numerical capacity results that demonstrate the reduced-complexity B-MIMO precoders are able to closely approximate the performance of their full-dimensional counterparts with complexity that tracks the number of mobile stations (MSs). In mm-wave systems, where the number of MSs is expected to be much lower than the system dimension, this enables a considerable reduction in the digital signal processing complexity and in systems equipped with analog beamforming front-ends the hardware complexity is also reduced. Thus, the proposed reduced-complexity multiuser precoders provide a near-optimal route for achieving multi-Gigabit/s sum rates in mm-wave MU-MIMO networks with the lowest transceiver complexity.

Journal ArticleDOI
TL;DR: In this article, the impact of channel aging on the performance of massive MIMO systems is considered and the effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter.
Abstract: Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multiuser MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multiceli network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

01 Jan 2013
TL;DR: This work starts by defining the new required metrics to characterize MIMO antenna systems, along with some isolation-enhancement mechanisms that are used in these closely packed antennas.
Abstract: Multiple-input-multiple-output (MIMO) antenna systems are a key enabling technology for modern fourth-generation (4G) wireless systems. The need for higher data rates for multimedia applications within the limited bandwidth and power levels led the way to the use of multiple antennas at the receiver and transmitter ends. Printed MIMO antenna systems, supporting multiple bands, including the lower band of the 4G wireless standard (LTE), pose a challenge in terms of available size. In this work, we start by defi ning the new required metrics to characterize MIMO antenna systems. We then present several recent printed multi-band MIMO antenna systems, along with some isolation-enhancement mechanisms that are used in these closely packed antennas.

Journal ArticleDOI
TL;DR: This paper proposes an efficient algorithm that is based on iteratively solving a sequence of group LASSO problems that performs BS clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial coordinated transmission.
Abstract: We consider the interference management problem in a multicell MIMO heterogeneous network. Within each cell there is a large number of distributed micro/pico base stations (BSs) that can be potentially coordinated for joint transmission. To reduce coordination overhead, we consider user-centric BS clustering so that each user is served by only a small number of (potentially overlapping) BSs. Thus, given the channel state information, our objective is to jointly design the BS clustering and the linear beamformers for all BSs in the network. In this paper, we formulate this problem from a {sparse optimization} perspective, and propose an efficient algorithm that is based on iteratively solving a sequence of group LASSO problems. A novel feature of the proposed algorithm is that it performs BS clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial coordinated transmission. Moreover, the cluster size can be controlled by adjusting a single penalty parameter in the nonsmooth regularized utility function. The convergence of the proposed algorithm (to a stationary solution) is guaranteed, and its effectiveness is demonstrated via extensive simulation.

Journal ArticleDOI
TL;DR: A general downlink model for multi-antenna heterogeneous cellular networks (HetNets), where base stations across tiers may differ in terms of transmit power, target signal-to-interference-ratio, deployment density, number of transmit antennas and the type of multi-Antenna transmission, is developed.
Abstract: We develop a general downlink model for multi-antenna heterogeneous cellular networks (HetNets), where base stations (BSs) across tiers may differ in terms of transmit power, target signal-to-interference-ratio (SIR), deployment density, number of transmit antennas and the type of multi-antenna transmission. In particular, we consider and compare space division multiple access (SDMA), single user beamforming (SU-BF), and baseline single-input single-output (SISO) transmission. For this general model, the main contributions are: (i) ordering results for both coverage probability and per user rate in closed form for any BS distribution for the three considered techniques, using novel tools from stochastic orders, (ii) upper bounds on the coverage probability assuming a Poisson BS distribution, and (iii) a comparison of the area spectral efficiency (ASE). The analysis concretely demonstrates, for example, that for a given total number of transmit antennas in the network, it is preferable to spread them across many single-antenna BSs vs. fewer multi-antenna BSs. Another observation is that SU-BF provides higher coverage and per user data rate than SDMA, but SDMA is in some cases better in terms of ASE.

Journal ArticleDOI
TL;DR: An environment adaptive secret key generation scheme that uses an adaptive lossy quantizer in conjunction with Cascade-based information reconciliation and privacy amplification is developed, which shows that the scheme performs the best in terms of generating high entropy bits at a high bit rate.
Abstract: We evaluate the effectiveness of secret key extraction, for private communication between two wireless devices, from the received signal strength (RSS) variations on the wireless channel between the two devices. We use real world measurements of RSS in a variety of environments and settings. The results from our experiments with 802.11-based laptops show that in certain environments, due to lack of variations in the wireless channel, the extracted bits have very low entropy making these bits unsuitable for a secret key, an adversary can cause predictable key generation in these static environments, and in dynamic scenarios where the two devices are mobile, and/or where there is a significant movement in the environment, high entropy bits are obtained fairly quickly. Building on the strengths of existing secret key extraction approaches, we develop an environment adaptive secret key generation scheme that uses an adaptive lossy quantizer in conjunction with Cascade-based information reconciliation and privacy amplification. Our measurements show that our scheme, in comparison to the existing ones that we evaluate, performs the best in terms of generating high entropy bits at a high bit rate. The secret key bit streams generated by our scheme also pass the randomness tests of the NIST test suite that we conduct. We also build and evaluate the performance of secret key extraction using small, low-power, hand-held devices-Google Nexus One phones-that are equipped 802.11 wireless network cards. Last, we evaluate secret key extraction in a multiple input multiple output (MIMO)-like sensor network testbed that we create using multiple TelosB sensor nodes. We find that our MIMO-like sensor environment produces prohibitively high bit mismatch, which we address using an iterative distillation stage that we add to the key extraction process. Ultimately, we show that the secret key generation rate is increased when multiple sensors are involved in the key extraction process.

Book
23 May 2013
TL;DR: This comprehensive overview describes the underlying principles, implementation details and key enhancing features of802.11n and 802.11ac throughput, including revised chapters on MAC and interoperability, plus new chapters on 802.
Abstract: If you've been searching for a way to get up to speed on IEEE 802.11n and 802.11ac WLAN standards without having to wade through the entire specification, then look no further. This comprehensive overview describes the underlying principles, implementation details and key enhancing features of 802.11n and 802.11ac. For many of these features the authors outline the motivation and history behind their adoption into the standard. A detailed discussion of key throughput, robustness, and reliability enhancing features (such as MIMO, multi-user MIMO, 40/80/160 MHz channels, transmit beamforming and packet aggregation) is given, plus clear summaries of issues surrounding legacy interoperability and coexistence. Now updated and significantly revised, this 2nd edition contains new material on 802.11ac throughput, including revised chapters on MAC and interoperability, plus new chapters on 802.11ac PHY and multi-user MIMO. An ideal reference for designers of WLAN equipment, network managers, and researchers in the field of wireless communications.

Journal ArticleDOI
TL;DR: The root cause of performance bottlenecks in current full-duplex systems is investigated and signal models for wideband and multiple-input-multiple-output (MIMO) full- DUplex systems are proposed, capturing all the salient design parameters, thus allowing future analytical development of advanced coding and signal design for full- duplex systems.
Abstract: Recent experimental results have shown that full-duplex communication is possible for short-range communications. However, extending full-duplex to long-range communication remains a challenge, primarily due to residual self-interference, even with a combination of passive suppression and active cancelation methods. In this paper, we investigate the root cause of performance bottlenecks in current full-duplex systems. We first classify all known full-duplex architectures based on how they compute their canceling signal and where the canceling signal is injected to cancel self-interference. Based on the classification, we analytically explain several published experimental results. The key bottleneck in current systems turns out to be the phase noise in the local oscillators in the transmit-and-receive chain of the full-duplex node. As a key by-product of our analysis, we propose signal models for wideband and multiple-input-multiple-output (MIMO) full-duplex systems, capturing all the salient design parameters, thus allowing future analytical development of advanced coding and signal design for full-duplex systems.

Journal ArticleDOI
TL;DR: This letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power.
Abstract: In this letter, we consider a large-scale multiple-input multiple-output (MIMO) system where the receiver should harvest energy from the transmitter by wireless power transfer to support its wireless information transmission. The energy beamforming in the large-scale MIMO system is utilized to address the challenging problem of long-distance wireless power transfer. Furthermore, considering the limitation of the power in such a system, this letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power. By solving the optimization problem, we derive an energy-efficient resource allocation scheme. Numerical results validate the effectiveness of the proposed scheme.

Patent
10 May 2013
TL;DR: In this paper, a communication method and apparatus using analog and digital hybrid beamforming is provided, which includes receiving a first message including a measurement and selection condition for hybrid beamformforming from a base station, measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least 1 transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beacon according to the measurement and report condition, determining feedback information for digital beamforming of the
Abstract: A communication method and apparatus using analog and digital hybrid beamforming are provided. The method includes receiving a first message including a measurement and selection condition for hybrid beamforming from a Base Station (BS), measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least one BS transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beam according to the measurement and report condition, determining feedback information for digital beamforming of the BS based on the effective channel matrix, transmitting the determined feedback information to the BS, and receiving a data burst from the BS according to a Multiple Input Multiple Output (MIMO) mode and/or a configuration scheduled based on the feedback information.

Proceedings ArticleDOI
09 Jun 2013
TL;DR: In order to speed up date rates further, an artificial neural network (ANN) is implemented to classify the signal and correct the error induced by the matrix inversion at the receiver, allowing a gross bit rate of 1.8 Mb/s in the best case.
Abstract: This paper presents the first ever experimental demonstration of a multiple-input multiple-output (MIMO) visible light communications system employing four silicon (Si) light emitting diodes (LEDs) and four organic photodetectors (OPDs) as transmitters and receivers, respectively. The proposed link is relatively low cost and it employs the on-off keying (OOK) modulation format offering a data rate of 200 kb/s without the need for equalization, which is a significant increase compared with previous non-equalized systems. In order to speed up date rates further, we implement an artificial neural network (ANN) to classify the signal and correct the error induced by the matrix inversion at the receiver, allowing a gross bit rate of 1.8 Mb/s in the best case.

Journal ArticleDOI
TL;DR: The proposed time-frequency training OFDM (TFT-OFDM) transmission scheme achieves higher spectral efficiency as well as the coded bit error rate performance close to the ergodic channel capacity in mobile environments.
Abstract: Large-scale orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) is a promising candidate to achieve the spectral efficiency up to several tens of bps/Hz for future wireless communications. One key challenge to realize practical large-scale OFDM MIMO systems is high-dimensional channel estimation in mobile multipath channels. In this paper, we propose the time-frequency training OFDM (TFT-OFDM) transmission scheme for large-scale MIMO systems, where each TFT-OFDM symbol without cyclic prefix adopts the time-domain training sequence (TS) and the frequency-domain orthogonal grouped pilots as the time-frequency training information. At the receiver, the corresponding time-frequency joint channel estimation method is proposed to accurately track the channel variation, whereby the received time-domain TS is used for path delays estimation without interference cancellation, while the path gains are acquired by the frequency-domain pilots. The channel property that path delays vary much slower than path gains is further exploited to improve the estimation performance, and the sparse nature of wireless channel is utilized to acquire the path gains by very few pilots. We also derive the theoretical Cramer-Rao lower bound (CRLB) of the proposed channel estimator. Compared with conventional large-scale OFDM MIMO systems, the proposed TFT-OFDM MIMO scheme achieves higher spectral efficiency as well as the coded bit error rate performance close to the ergodic channel capacity in mobile environments.

Journal ArticleDOI
TL;DR: To combat the intercarrier interference (ICI) caused by highly dynamic Doppler spectrum in real orthogonal frequency division multiplexing based V2V systems, a new type of ICI cancellation scheme, named as precoding based cancellation (PBC) scheme is proposed.
Abstract: In this paper, we propose a new regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering wideband multiple-input multiple-output vehicle-to-vehicle (V2V) Ricean fading channels. By correcting the unrealistic assumption widely used in current RS-GBSMs, the proposed model can more practically study the impact of the vehicular traffic density on channel statistics for different time delays. From the proposed model, we derive the Doppler power spectral density (PSD) and find that highly dynamic Doppler spectrum appears for V2V channels. Excellent agreement is achieved between the derived Doppler PSD and measured data, demonstrating the utility of the proposed model. To combat the intercarrier interference (ICI) caused by highly dynamic Doppler spectrum in real orthogonal frequency division multiplexing based V2V systems, this paper proposes a new type of ICI cancellation scheme, named as precoding based cancellation (PBC) scheme. The proposed scheme can be easily implemented into real V2V systems with the same ICI mitigation performance as the current best ICI cancellation scheme that has high complexity. To further improve the performance of the proposed PBC scheme, a new phase rotation aided (PRA) method, namely constant PRA (CPRA) method, is proposed. Compared with the existing PRA method, the CPRA method has better performance and much less implementation complexity. Therefore, the proposed PBC scheme with the CPRA method is the best ICI cancellation scheme for real V2V systems.

Journal ArticleDOI
TL;DR: This paper considers transmit optimization in multi-input multi-output (MIMO) wiretap channels, wherein they aim at maximizing the secrecy capacity or rate of an MIMO channel overheard by one or multiple eavesdroppers, and proposes an alternating optimization (AO) approach to tackle these secrecy optimization problems.
Abstract: This paper considers transmit optimization in multi-input multi-output (MIMO) wiretap channels, wherein we aim at maximizing the secrecy capacity or rate of an MIMO channel overheard by one or multiple eavesdroppers. Such optimization problems are nonconvex, and appear to be difficult especially in the multi-eavesdropper scenario. In this paper, we propose an alternating optimization (AO) approach to tackle these secrecy optimization problems. We first consider the secrecy capacity maximization (SCM) problem in the single eavesdropper scenario. An AO algorithm is derived through a judicious SCM reformulation. The algorithm conducts some kind of reweighting and water-filling in an alternating fashion, and thus is computationally efficient to implement. We also prove that the AO algorithm is guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point of the SCM problem. Then, we turn our attention to the multiple eavesdropper scenario, where the artificial noise (AN)-aided secrecy rate maximization (SRM) problem is considered. Although the AN-aided SRM problem has a more complex problem structure than the previous SCM, we show that AO can be extended to deal with the former, wherein the problem is handled by solving convex problems in an alternating fashion. Again, the resulting AO method is proven to have KKT point convergence guarantee. For fast implementation, a custom-designed AO algorithm based on smoothing and projected gradient is also derived. The secrecy rate performance and computational efficiency of the proposed algorithms are demonstrated by simulations.

Journal ArticleDOI
TL;DR: It is suggested that time division duplexing (TDD) could be a key enabler for a new heterogeneous network architecture with the potential to provide ubiquitous coverage and unprecedented spectral area efficiencies.
Abstract: In this paper, we present a vision beyond the conventional Long Term Evolution Fourth Generation (LTE-4G) evolution path and suggest that time division duplexing (TDD) could be a key enabler for a new heterogeneous network architecture with the potential to provide ubiquitous coverage and unprecedented spectral area efficiencies. This architecture is based on a cochannel deployment of macro base stations (BSs) with very large antenna arrays and a secondary tier of small cells (SCs) with a few antennas each. Both tiers employ a TDD protocol in a synchronized fashion. The resulting channel reciprocity enables not only the estimation of large-dimensional channels at the BSs, but also an implicit coordination between both tiers without the need to exchange user data or channel state information (CSI) over the backhaul. In particular, during the uplink (UL), the BSs and SCs can locally estimate the dominant interference sub-space. This knowledge can be leveraged for downlink (DL) precoding to reduce intra- and inter-tier interference. In other words, the BSs and SCs “sacrifice” some of their degrees of freedom for interference rejection. Our simulation results demonstrate that the proposed architecture and precoding scheme can achieve a very attractive rate region compared to several baseline scenarios. For example, with 100 antennas at each BS and four antennas at each SC, we observe an aggregate area throughput of 7.63 Gb/s/km2 (DL) and 8.93 Gb/s/km2 (UL) on a 20 MHz band shared by about 100 mobile devices.

Proceedings ArticleDOI
06 May 2013
TL;DR: This work analyzes a combination of two densification approaches, namely “massive” multiple-input multiple-output (MIMO) base stations and small-cell access points and provides promising simulation results showing how the total power consumption can be greatly improved by combining massive MIMO and small cells.
Abstract: To improve the cellular energy efficiency, without sacrificing quality-of-service (QoS) at the users, the network topology must be densified to enable higher spatial reuse. We analyze a combination of two densification approaches, namely “massive” multiple-input multiple-output (MIMO) base stations and small-cell access points. If the latter are operator-deployed, a spatial soft-cell approach can be taken where the multiple transmitters serve the users by joint non-coherent multiflow beamforming. We minimize the total power consumption (both dynamic emitted power and static hardware power) while satisfying QoS constraints. This problem is proved to have a hidden convexity that enables efficient solution algorithms. Interestingly, the optimal solution promotes exclusive assignment of users to transmitters. Furthermore, we provide promising simulation results showing how the total power consumption can be greatly improved by combining massive MIMO and small cells; this is possible with both optimal and low-complexity beamforming.

Journal ArticleDOI
TL;DR: A key observation is that distributed antenna systems are tightly integrated into the cellular architecture, and incorporate physical layer technologies like MIMO communication and multiuser MIMo to provide higher data rates.
Abstract: Providing uniformly high capacity in cellular systems is challenging due to fading, path loss, and interference. A partial solution to this problem is the deployment of distributed antenna systems, where transmission points are distributed throughout the cell using coax cable or fiber, instead of being centrally located on a single tower. This article reviews how distributed antenna systems are evolving to provide higher performance on the downlink in cellular systems. Research trends in distributed antennas for the downlink of cellular systems are described along with current progress on their integration into commercial wireless cellular standards. A key observation is that distributed antenna systems are tightly integrated into the cellular architecture, and incorporate physical layer technologies like MIMO communication and multiuser MIMO to provide higher data rates.

Journal ArticleDOI
TL;DR: The theoretical analysis and simulations show the somewhat surprising result that for a given number of receivers the improved transmit diversity dominates the performance of practical linear precoders.
Abstract: We explore the performance of multiple input multiple output (MIMO) transmitters in correlated channels where increasing numbers of antenna elements are fitted in a fixed physical space. As well investigated in the literature, two main effects emerge in such a design: transmit spatial correlation and mutual antenna coupling. In contrast to the literature however, here we investigate the combined effect of reducing the distance between the antenna elements with increasing the number of elements in a fixed transmitter space. In other words, towards the implementation of large-scale MIMO transmitters in limited physical spaces, we investigate the joint effect of two contradicting phenomena: the reduction of spatial diversity due to reducing the separation between antennas and the increase in transmit diversity by increasing the number of elements. Within this context, we analytically approximate the performance of two distinct linear precoding designs. The theoretical analysis and simulations show the somewhat surprising result that for a given number of receivers the improved transmit diversity dominates the performance of practical linear precoders. Consequently, important benefits in the system sum rate can be gleaned by fitting more antenna elements in a fixed space by employing separations smaller than the wavelength of the transmit frequency.