scispace - formally typeset
Search or ask a question

Showing papers on "MIMO published in 2019"


Journal ArticleDOI
TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Abstract: Intelligent reflecting surface (IRS) is a revolutionary and transformative technology for achieving spectrum and energy efficient wireless communication cost-effectively in the future. Specifically, an IRS consists of a large number of low-cost passive elements each being able to reflect the incident signal independently with an adjustable phase shift so as to collaboratively achieve three-dimensional (3D) passive beamforming without the need of any transmit radio-frequency (RF) chains. In this paper, we study an IRS-aided single-cell wireless system where one IRS is deployed to assist in the communications between a multi-antenna access point (AP) and multiple single-antenna users. We formulate and solve new problems to minimize the total transmit power at the AP by jointly optimizing the transmit beamforming by active antenna array at the AP and reflect beamforming by passive phase shifters at the IRS, subject to users’ individual signal-to-interference-plus-noise ratio (SINR) constraints. Moreover, we analyze the asymptotic performance of IRS’s passive beamforming with infinitely large number of reflecting elements and compare it to that of the traditional active beamforming/relaying. Simulation results demonstrate that an IRS-aided MIMO system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains. We also draw useful insights into optimally deploying IRS in future wireless systems.

3,045 citations


Posted Content
TL;DR: An intelligent reflecting surface (IRS) is invoked for enhancing the energy harvesting performance of a simultaneous wireless information and power transfer (SWIPT) aided system and the proposed BCD algorithm converges rapidly, which is appealing for practical applications.
Abstract: An intelligent reflecting surface (IRS) is invoked for enhancing the energy harvesting performance of a simultaneous wireless information and power transfer (SWIPT) aided system. Specifically, an IRS-assisted SWIPT system is considered, where a multi-antenna aided base station (BS) communicates with several multi-antenna assisted information receivers (IRs), while guaranteeing the energy harvesting requirement of the energy receivers (ERs). To maximize the weighted sum rate (WSR) of IRs, the transmit precoding (TPC) matrices of the BS and passive phase shift matrix of the IRS should be jointly optimized. To tackle this challenging optimization problem, we first adopt the classic block coordinate descent (BCD) algorithm for decoupling the original optimization problem into several subproblems and alternatively optimize the TPC matrices and the phase shift matrix. For each subproblem, we provide a low-complexity iterative algorithm, which is guaranteed to converge to the Karush-Kuhn-Tucker (KKT) point of each subproblem. The BCD algorithm is rigorously proved to converge to the KKT point of the original problem. We also conceive a feasibility checking method to study its feasibility. Our extensive simulation results confirm that employing IRSs in SWIPT beneficially enhances the system performance and the proposed BCD algorithm converges rapidly, which is appealing for practical applications.

559 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explain how the first chapter of the massive MIMO research saga has come to an end, while the story has just begun, and outline five new massive antenna array related research directions.

556 citations


Journal ArticleDOI
TL;DR: A conceptual, generic, and expandable framework for classifying the existing PLS techniques against wireless passive eavesdropping is proposed, and the security techniques that are reviewed are divided into two primary approaches: signal-to-interference-plus-noise ratio- based approach and complexity-based approach.
Abstract: Physical layer security (PLS) has emerged as a new concept and powerful alternative that can complement and may even replace encryption-based approaches, which entail many hurdles and practical problems for future wireless systems. The basic idea of PLS is to exploit the characteristics of the wireless channel and its impairments including noise, fading, interference, dispersion, diversity, etc. in order to ensure the ability of the intended user to successfully perform data decoding while preventing eavesdroppers from doing so. Thus, the main design goal of PLS is to increase the performance difference between the link of the legitimate receiver and that of the eavesdropper by using well-designed transmission schemes. In this survey, we propose a conceptual, generic, and expandable framework for classifying the existing PLS techniques against wireless passive eavesdropping. In this flexible framework, the security techniques that we comprehensively review in this treatise are divided into two primary approaches: signal-to-interference-plus-noise ratio-based approach and complexity-based approach. The first approach is classified into three major categories: first, secrecy channel codes-based schemes; second, security techniques based on channel adaptation; third, schemes based on injecting interfering artificial (noise/jamming) signals along with the transmitted information signals. The second approach (complexity-based), which is associated with the mechanisms of extracting secret sequences from the shared channel, is classified into two main categories based on which layer the secret sequence obtained by channel quantization is applied on. The techniques belonging to each one of these categories are divided and classified into three main signal domains: time, frequency and space. For each one of these domains, several examples are given and illustrated along with the review of the state-of-the-art security advances in each domain. Moreover, the advantages and disadvantages of each approach alongside the lessons learned from existing research works are stated and discussed. The recent applications of PLS techniques to different emerging communication systems such as visible light communication, body area network, power line communication, Internet of Things, smart grid, mm-Wave, cognitive radio, vehicular ad-hoc network, unmanned aerial vehicle, ultra-wideband, device-to-device, radio-frequency identification, index modulation, and 5G non-orthogonal multiple access based-systems, are also reviewed and discussed. The paper is concluded with recommendations and future research directions for designing robust, efficient and strong security methods for current and future wireless systems.

457 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the potential of massive MIMO while addressing practical deployment issues to deal with the increased back/fronthauling overhead deriving from the signal co-processing.
Abstract: Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users and hence increases the spectral and energy efficiency (see references herein). It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguish ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.

331 citations


Journal ArticleDOI
TL;DR: In this paper, a deep learning-enabled mmWave massive MIMO framework for effective hybrid precoding is proposed, in which each selection of the precoders for obtaining the optimized decoder is regarded as a mapping relation in the deep neural network (DNN).
Abstract: Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) has been regarded to be an emerging solution for the next generation of communications, in which hybrid analog and digital precoding is an important method for reducing the hardware complexity and energy consumption associated with mixed signal components. However, the fundamental limitations of the existing hybrid precoding schemes is that they have high computational complexity and fail to fully exploit the spatial information. To overcome these limitations, this paper proposes, a deep-learning-enabled mmWave massive MIMO framework for effective hybrid precoding, in which each selection of the precoders for obtaining the optimized decoder is regarded as a mapping relation in the deep neural network (DNN). Specifically, the hybrid precoder is selected through training based on the DNN for optimizing precoding process of the mmWave massive MIMO. Additionally, we present extensive simulation results to validate the excellent performance of the proposed scheme. The results exhibit that the DNN-based approach is capable ofminimizing the bit error ratio (BER) and enhancing spectrum efficiency of the mmWave massive MIMO, which achieves better performance in hybrid precoding compared with conventional schemes while substantially reducing the required computational complexity.

326 citations


Journal ArticleDOI
TL;DR: This paper quantifies the advantages of CF massive MIMO systems in terms of their energy- and cost-efficiency and the signal processing techniques invoked for reducing the fronthaul burden for joint channel estimation and for transmit precoding.
Abstract: Cell-free (CF) massive multiple-input-multiple-output (MIMO) systems have a large number of individually controllable antennas distributed over a wide area for simultaneously serving a small number of user equipments (UEs). This solution has been considered as a promising next-generation technology due to its ability to offer a similar quality of service to all UEs despite its low-complexity signal processing. In this paper, we provide a comprehensive survey of CF massive MIMO systems. To be more specific, the benefit of the so-called channel hardening and the favorable propagation conditions are exploited. Furthermore, we quantify the advantages of CF massive MIMO systems in terms of their energy- and cost-efficiency. Additionally, the signal processing techniques invoked for reducing the fronthaul burden for joint channel estimation and for transmit precoding are analyzed. Finally, the open research challenges in both its deployment and network management are highlighted.

322 citations


Journal ArticleDOI
TL;DR: It is shown that under the proposed novel control scheme, each element in the system output tracking error vector of the MIMO nonlinear system can converge into small sets near zero with fixed-time convergence rate, while the asymmetric output constraint requirements on each element of theoutput tracking error are satisfied at all time.
Abstract: In this note, we propose a novel adaptive fixed-time control scheme for output tracking problems of a class of multi-input multi-output (MIMO) nonlinear systems with asymmetric output constraint requirements, using a new universal barrier function . It is universal in the sense that the proposed scheme is a general one that also works for systems with symmetric constraints or without constraint requirements, without changing the control structure. Novel adaptive estimations and analysis are introduced to address system uncertainties in the fixed-time convergence settings. We show that under the proposed novel control scheme, each element in the system output tracking error vector of the MIMO nonlinear system can converge into small sets near zero with fixed-time convergence rate, while the asymmetric output constraint requirements on each element of the output tracking error are satisfied at all time. The proposed scheme can effectively deal with unmatched system uncertainties and uncertain gain functions. In the end, a simulation example on a two-degree-of-freedom robot manipulator is presented to demonstrate the efficacy of the proposed scheme.

322 citations


Posted Content
TL;DR: The fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver is characterized by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix.
Abstract: Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. First, we consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Next, we consider capacity maximization for broadband transmission in a general MIMO orthogonal frequency division multiplexing (OFDM) system under frequency-selective fading channels, where transmit covariance matrices can be optimized for different subcarriers while only one common set of IRS reflection coefficients can be designed to cater to all subcarriers. To tackle this more challenging problem, we propose a new alternating optimization algorithm based on convex relaxation to find a high-quality suboptimal solution. Numerical results show that our proposed algorithms achieve substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperform various benchmark schemes. In particular, it is shown that with the proposed algorithms, various key parameters of the IRS-aided MIMO channel such as channel total power, rank, and condition number can be significantly improved for capacity enhancement.

298 citations


Posted Content
Ertugrul Basar1
TL;DR: The findings reveal that RIS-based IM, which enables high data rates with remarkably low error rates, can become a potential candidate for future wireless communication systems in the context of beyond multiple-input multiple-output (MIMO) solutions.
Abstract: Transmission through reconfigurable intelligent surfaces (RISs), which control the reflection/scattering characteristics of incident waves in a deliberate manner to enhance the signal quality at the receiver, appears as a promising candidate for future wireless communication systems. In this paper, we bring the concept of RIS-assisted communications to the realm of index modulation (IM) by proposing RIS-space shift keying (RIS-SSK) and RIS-spatial modulation (RIS-SM) schemes. These two schemes are realized through not only intelligent reflection of the incoming signals to improve the reception but also utilization of the IM principle for the indices of multiple receive antennas in a clever way to improve the spectral efficiency. Maximum energy-based suboptimal (greedy) and exhaustive search-based optimal (maximum likelihood) detectors of the proposed RIS-SSK/SM schemes are formulated and a unified framework is presented for the derivation of their theoretical average bit error probability. Extensive computer simulation results are provided to assess the potential of RIS-assisted IM schemes as well as to verify our theoretical derivations. Our findings also reveal that RIS-based IM, which enables high data rates with remarkably low error rates, can become a potential candidate for future wireless communication systems in the context of beyond multiple-input multiple-output (MIMO) solutions.

275 citations


Posted Content
TL;DR: This work introduces the DeepMIMO dataset, which is a generic dataset for mmWave/massive MIMO channels, and shows how this dataset can be used in an example deep learning application of mmWave beam prediction.
Abstract: Machine learning tools are finding interesting applications in millimeter wave (mmWave) and massive MIMO systems. This is mainly thanks to their powerful capabilities in learning unknown models and tackling hard optimization problems. To advance the machine learning research in mmWave/massive MIMO, however, there is a need for a common dataset. This dataset can be used to evaluate the developed algorithms, reproduce the results, set benchmarks, and compare the different solutions. In this work, we introduce the DeepMIMO dataset, which is a generic dataset for mmWave/massive MIMO channels. The DeepMIMO dataset generation framework has two important features. First, the DeepMIMO channels are constructed based on accurate ray-tracing data obtained from Remcom Wireless InSite. The DeepMIMO channels, therefore, capture the dependence on the environment geometry/materials and transmitter/receiver locations, which is essential for several machine learning applications. Second, the DeepMIMO dataset is generic/parameterized as the researcher can adjust a set of system and channel parameters to tailor the generated DeepMIMO dataset for the target machine learning application. The DeepMIMO dataset can then be completely defined by the (i) the adopted ray-tracing scenario and (ii) the set of parameters, which enables the accurate definition and reproduction of the dataset. In this paper, an example DeepMIMO dataset is described based on an outdoor ray-tracing scenario of 18 base stations and more than one million users. The paper also shows how this dataset can be used in an example deep learning application of mmWave beam prediction.

Journal ArticleDOI
TL;DR: This paper discusses optimal and near-optimal detection principles specifically designed for the massive MIMO system such as detectors based on a local search, belief propagation and box detection, and presents recent advances of detection algorithms which are mostly based on machine learning or sparsity based algorithms.
Abstract: Massive multiple-input multiple-output (MIMO) is a key technology to meet the user demands in performance and quality of services (QoS) for next generation communication systems. Due to a large number of antennas and radio frequency (RF) chains, complexity of the symbol detectors increased rapidly in a massive MIMO uplink receiver. Thus, the research to find the perfect massive MIMO detection algorithm with optimal performance and low complexity has gained a lot of attention during the past decade. A plethora of massive MIMO detection algorithms has been proposed in the literature. The aim of this paper is to provide insights on such algorithms to a generalist of wireless communications. We garner the massive MIMO detection algorithms and classify them so that a reader can find a distinction between different algorithms from a wider range of solutions. We present optimal and near-optimal detection principles specifically designed for the massive MIMO system such as detectors based on a local search, belief propagation and box detection. In addition, we cover detectors based on approximate inversion, which has gained popularity among the VLSI signal processing community due to their deterministic dataflow and low complexity. We also briefly explore several nonlinear small-scale MIMO (2-4 antenna receivers) detectors and their applicability in the massive MIMO context. In addition, we present recent advances of detection algorithms which are mostly based on machine learning or sparsity based algorithms. In each section, we also mention the related implementations of the detectors. A discussion of the pros and cons of each detector is provided.

Journal ArticleDOI
TL;DR: The results in this paper clearly demonstrate that deep CNN can efficiently exploit channel correlation to improve the estimation performance for mmWave massive MIMO systems.
Abstract: For millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, hybrid processing architecture is usually used to reduce the complexity and cost, which poses a very challenging issue in channel estimation. In this paper, deep convolutional neural network (CNN) is employed to address this problem. We first propose a spatial-frequency CNN (SF-CNN) based channel estimation exploiting both the spatial and frequency correlation, where the corrupted channel matrices at adjacent subcarriers are input into the CNN simultaneously. Then, exploiting the temporal correlation in time-varying channels, a spatial-frequency-temporal CNN (SFT-CNN) based approach is developed to further improve the accuracy. Moreover, we design a spatial pilot-reduced CNN (SPR-CNN) to save spatial pilot overhead for channel estimation, where channels in several successive coherence intervals are grouped and estimated by a channel estimation unit with memory. Numerical results show that the proposed SF-CNN and SFT-CNN based approaches outperform the non-ideal minimum mean-squared error (MMSE) estimator but with reduced complexity, and achieve the performance close to the ideal MMSE estimator that is very difficult to be implemented in practical situations. They are also robust to different propagation scenarios. The SPR-CNN based approach achieves comparable performance to SF-CNN and SFT-CNN based approaches while only requires about one-third of spatial pilot overhead at the cost of complexity. The results in this paper clearly demonstrate that deep CNN can efficiently exploit channel correlation to improve the estimation performance for mmWave massive MIMO systems.

Journal ArticleDOI
TL;DR: It is demonstrated that the proposed channel estimation in OTFS significantly outperforms OFDM with known channel information, and extensions of the proposed schemes to multiple-input multiple-output (MIMO) and multi-user uplink/downlink are presented.
Abstract: Orthogonal time frequency space (OTFS) modulation was shown to provide significant error performance advantages over orthogonal frequency division multiplexing (OFDM) in delay–Doppler channels. In order to detect OTFS modulated data, the channel impulse response needs to be known at the receiver. In this paper, we propose embedded pilot-aided channel estimation schemes for OTFS. In each OTFS frame, we arrange pilot, guard, and data symbols in the delay–Doppler plane to suitably avoid interference between pilot and data symbols at the receiver. We develop such symbol arrangements for OTFS over multipath channels with integer and fractional Doppler shifts, respectively. At the receiver, channel estimation is performed based on a threshold method and the estimated channel information is used for data detection via a message passing algorithm. Thanks to our specific embedded symbol arrangements, both channel estimation and data detection are performed within the same OTFS frame with minimum overhead. We compare through simulations the error performance of OTFS using the proposed channel estimation and OTFS with ideally known channel information and observe only a marginal performance loss. We also demonstrate that the proposed channel estimation in OTFS significantly outperforms OFDM with known channel information. Finally, we present extensions of the proposed schemes to multiple-input multiple-output (MIMO) and multi-user uplink/downlink.

Journal ArticleDOI
TL;DR: A 3D-structured orthogonal matching pursuit algorithm based channel estimation technique to solve the downlink channel estimation problem for OTFS massive MIMO.
Abstract: Orthogonal time frequency space (OTFS) modulation outperforms orthogonal frequency division multiplexing (OFDM) in high-mobility scenarios. One challenge for OTFS massive MIMO is downlink channel estimation due to the large number of base station antennas. In this paper, we propose a 3D-structured orthogonal matching pursuit algorithm based channel estimation technique to solve this problem. First, we show that the OTFS MIMO channel exhibits 3D-structured sparsity: normal sparsity along the delay dimension, block sparsity along the Doppler dimension, and burst sparsity along the angle dimension. Based on the 3D-structured channel sparsity, we then formulate the downlink channel estimation problem as a sparse signal recovery problem. Simulation results show that the proposed algorithm can achieve accurate channel state information with low pilot overhead.

Journal ArticleDOI
TL;DR: A real-time CSI feedback architecture, called CsiNet-long short-term memory (LSTM), is developed by extending a novel deep learning (DL)-based CSI sensing and recovery network that outperforms existing compressive sensing-based and DL-based methods and is remarkably robust to CR reduction.
Abstract: Massive multiple-input multiple-output (MIMO) systems rely on channel state information (CSI) feedback to perform precoding and achieve performance gain in frequency division duplex networks. However, the huge number of antennas poses a challenge to the conventional CSI feedback reduction methods and leads to excessive feedback overhead. In this letter, we develop a real-time CSI feedback architecture, called CsiNet-long short-term memory (LSTM), by extending a novel deep learning (DL)-based CSI sensing and recovery network. CsiNet-LSTM considerably enhances recovery quality and improves tradeoff between compression ratio (CR) and complexity by directly learning spatial structures combined with time correlation from training samples of time-varying massive MIMO channels. Simulation results demonstrate that CsiNet-LSTM outperforms existing compressive sensing-based and DL-based methods and is remarkably robust to CR reduction.

Journal ArticleDOI
TL;DR: In this paper, a deep-learning-enabled mmWave massive MIMO framework for effective hybrid precoding is proposed, in which each selection of the precoders for obtaining the optimized decoder is regarded as a mapping relation in the deep neural network (DNN).
Abstract: Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) has been regarded to be an emerging solution for the next generation of communications, in which hybrid analog and digital precoding is an important method for reducing the hardware complexity and energy consumption associated with mixed signal components. However, the fundamental limitations of the existing hybrid precoding schemes are that they have high-computational complexity and fail to fully exploit the spatial information. To overcome these limitations, this paper proposes a deep-learning-enabled mmWave massive MIMO framework for effective hybrid precoding, in which each selection of the precoders for obtaining the optimized decoder is regarded as a mapping relation in the deep neural network (DNN). Specifically, the hybrid precoder is selected through training based on the DNN for optimizing precoding process of the mmWave massive MIMO. Additionally, we present extensive simulation results to validate the excellent performance of the proposed scheme. The results exhibit that the DNN-based approach is capable of minimizing the bit error ratio and enhancing the spectrum efficiency of the mmWave massive MIMO, which achieves better performance in hybrid precoding compared with conventional schemes while substantially reducing the required computational complexity.

Book
31 Jan 2019
TL;DR: Understand the fundamentals of wireless and MIMO communication with this accessible and comprehensive text, which provides a sound treatment of the key concepts underpinning contemporary wireless communication and M IMO, all the way to massive MIMo.
Abstract: Understand the fundamentals of wireless and MIMO communication with this accessible and comprehensive text. Viewing the subject through an information theory lens, but also drawing on other perspectives, it provides a sound treatment of the key concepts underpinning contemporary wireless communication and MIMO, all the way to massive MIMO. Authoritative and insightful, it includes over 330 worked examples and 450 homework problems, with solutions and MATLAB code and data available online. Altogether, this is an excellent resource for instructors and graduate students, as well as an outstanding reference for researchers and practicing engineers.

Posted Content
TL;DR: This paper proposes a novel channel estimation protocol for the RIS aided multi-user multi-input multi-output (MIMO) system to estimate the cascade channel, which consists of the channels from the base station to the RIS and from the RIS to the user.
Abstract: Channel acquisition is one of the main challenges for the deployment of reconfigurable intelligent surface (RIS) aided communication system. This is because RIS has a large number of reflective elements, which are passive devices without active transmitting/receiving and signal processing abilities. In this paper, we study the uplink channel estimation for the RIS aided multi-user multi-input multi-output (MIMO) system. Specifically, we propose a novel channel estimation protocol for the above system to estimate the cascade channel, which consists of the channels from the base station (BS) to the RIS and from the RIS to the user. Further, we recognize the cascaded channels are typically sparse, this allows us to formulate the channel estimation problem into a sparse channel matrix recovery problem using the compressive sensing (CS) technique, with which we can achieve robust channel estimation with limited training overhead. In particular, the sparse channel matrixes of the cascaded channels of all users have a common row-column-block sparsity structure due to the common channel between BS and RIS. By considering such a common sparsity, we further propose a two-step procedure based multi-user joint channel estimator. In the first step, by considering common column-block sparsity, we project the signal into the common column subspace for reducing complexity, quantization error, and noise level. In the second step, by considering common row-block sparsity, we apply all the projected signals to formulate a multi-user joint sparse matrix recovery problem, and we propose an iterative approach to solve this non-convex problem efficiently. Moreover, the optimization of the training reflection sequences at the RIS is studied to improve the estimation performance.

Journal ArticleDOI
TL;DR: In this paper, an antenna element that has not only the self-isolated property but also a compact size is proposed for the fifth-generation MIMO system in mobile phone applications.
Abstract: An antenna element that has not only the self-isolated property but also a compact size is proposed for the fifth-generation multiple-input and multiple-output (MIMO) system in mobile phone applications. In particular, the size reduction is done by introducing two vertical stubs into the original self-isolated antenna element. It is demonstrated that very good isolation and antenna efficiency for an 8-antenna MIMO system can be obtained without using any additional isolation elements or decoupling techniques. An antenna prototype is fabricated and measured; and a quite good agreement between simulation and measurement is obtained.

Journal ArticleDOI
TL;DR: A novel balanced open-slot antenna is designed as an array antenna element, in which this antenna design can yield a balanced slot mode that can enhance the isolation between two adjacent input ports and further mitigates the coupling between antenna elements.
Abstract: A high-isolation eight-antenna multi-input multi-output (MIMO) array operating in the 3.5 GHz band (3.4–3.6 GHz) for future smartphones is proposed. Here, a novel balanced open-slot antenna is designed as an array antenna element, in which this antenna design can yield a balanced slot mode (with reduced ground effects) that can enhance the isolation between two adjacent input ports. Furthermore, by meticulously arranging the positions of the eight antenna elements, desirable polarization diversity can also be successfully achieved, which further mitigates the coupling between antenna elements. A prototype was manufactured to validate the simulation. A good impedance matching (return loss > 10 dB), high isolation (>17.5 dB), high total efficiency (>62%), and low envelope correlation coefficient (ECC, <0.05) were measured across the desired operation bandwidth. To verify the MIMO performance, ergodic channel capacity using the Kronecker channel model was calculated. The effects of hand phantom were also studied.

Journal ArticleDOI
TL;DR: Different MIMO antenna design techniques and all of their mutual coupling reduction techniques through various structures and mechanisms are presented with multiple examples and characteristics comparison.
Abstract: In recent years, multiple-input-multiple-output (MIMO) antennas with the ability to radiate waves in more than one pattern and polarization play a great role in modern telecommunication systems. This paper provides a theoretical review of different mutual coupling reduction techniques in MIMO antenna systems. The increase in the mutual coupling can affect the antenna characteristics drastically and therefore degrades the performance of the MIMO systems. It is possible to improve the performance partially by calibrating the mutual coupling in the digital domain. However, the simple and effective approach is to use the techniques, such as defected ground structure, parasitic or slot element, complementary split ring resonator, and decoupling networks which can overcome the mutual coupling effects by means of physical implementation. An extensive discussion on the basis of different mutual coupling reduction techniques, their examples, and comparative study is still rare in the literature. Therefore, in this paper, different MIMO antenna design techniques and all of their mutual coupling reduction techniques through various structures and mechanisms are presented with multiple examples and characteristics comparison.

Journal ArticleDOI
TL;DR: A fast beamforming design method using unsupervised learning, which trains the deep neural network (DNN) offline and provides real-time service online only with simple neural network operations, which reduces the computational complexity and volume of the DNN, making it more suitable for low computation-capacity devices.
Abstract: In the downlink transmission scenario, power allocation and beamforming design at the transmitter are essential when using multiple antenna arrays. This paper considers a multiple input–multiple output broadcast channel to maximize the weighted sum-rate under the total power constraint. The classical weighted minimum mean-square error (WMMSE) algorithm can obtain suboptimal solutions but involves high computational complexity. To reduce this complexity, we propose a fast beamforming design method using unsupervised learning, which trains the deep neural network (DNN) offline and provides real-time service online only with simple neural network operations. The training process is based on an end-to-end method without labeled samples avoiding the complicated process of obtaining labels. Moreover, we use the “APoZ”-based pruning algorithm to compress the network volume, which further reduces the computational complexity and volume of the DNN, making it more suitable for low computation-capacity devices. Finally, the experimental results demonstrate that the proposed method improves computational speed significantly with performance close to the WMMSE algorithm.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the integration of SWIPT in mmWave massive MIMO-NOMA systems, where each user can extract both information and energy from the received RF signals by using a power splitting receiver.
Abstract: Non-orthogonal multiple access (NOMA) has been recently considered in millimeter-wave (mmWave) massive MIMO systems to further enhance the spectrum efficiency In addition, simultaneous wireless information and power transfer (SWIPT) is a promising solution to maximize the energy efficiency In this paper, for the first time, we investigate the integration of SWIPT in mmWave massive MIMO-NOMA systems As mmWave massive MIMO will likely use hybrid precoding (HP) to significantly reduce the number of required radio-frequency (RF) chains without an obvious performance loss, where the fully digital precoder is decomposed into a high-dimensional analog precoder and a low-dimensional digital precoder, we propose to apply SWIPT in HP-based MIMO-NOMA systems, where each user can extract both information and energy from the received RF signals by using a power splitting receiver Specifically, the cluster-head selection algorithm is proposed to select one user for each beam at first, and then the analog precoding is designed according to the selected cluster heads for all beams After that, user grouping is performed based on the correlation of users’ equivalent channels Then, the digital precoding is designed by selecting users with the strongest equivalent channel gain in each beam Finally, the achievable sum rate is maximized by jointly optimizing power allocation for mmWave massive MIMO-NOMA and power splitting factors for SWIPT, and an iterative optimization algorithm is developed to solve the non-convex problem Simulation results show that the proposed HP-based MIMO-NOMA with SWIPT can achieve higher spectrum and energy efficiency compared with HP-based MIMO-OMA with SWIPT

Posted Content
TL;DR: In this paper, the authors explain how the first chapter of the massive MIMO research saga has come to an end, while the story has just begun, and outline five new massive antenna array related research directions.
Abstract: Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.

Journal ArticleDOI
TL;DR: This paper forms a whole-trajectory-oriented optimization problem, where the transmission duration and the transmit power of all devices are jointly designed to maximize the data collection efficiency for the whole flight, and proposes an iterative scheme to overcome the nonconvexity of the formulated problem.
Abstract: The unmanned aerial vehicle (UAV) is a promising enabler of the Internet of Things (IoT) vision, due to its agile maneuverability. In this paper, we explore the potential gain of UAV-aided data collection in a generalized IoT scenario. Particularly, a composite channel model, including both large-scale and small-scale fading is used to depict typical propagation environments. Moreover, rigorous energy constraints are considered to characterize IoT devices as practically as possible. A multiantenna UAV is employed, which can communicate with a cluster of single-antenna IoT devices to form a virtual MIMO link. We formulate a whole-trajectory-oriented optimization problem, where the transmission duration and the transmit power of all devices are jointly designed to maximize the data collection efficiency for the whole flight. Different from previous studies, only the slowly varying large-scale channel state information is assumed available, to coincide with the fact that practically it is quite difficult to predictively acquire the random small-scale channel fading prior to the UAV flight. We propose an iterative scheme to overcome the nonconvexity of the formulated problem. The presented scheme can provide a significant performance gain over traditional schemes and converges quickly.

Journal ArticleDOI
21 Jan 2019
TL;DR: The statistical properties of the minimum mean squared error (MMSE), element-wise MMSE, and least-square channel estimates for this model, where the channels are spatially correlated Rician fading, are derived and analyzed.
Abstract: This paper considers multi-cell massive multiple-input multiple-output systems, where the channels are spatially correlated Rician fading. The channel model is composed of a deterministic line-of-sight path and a stochastic non-line-of-sight component describing a practical spatially correlated multipath environment. We derive the statistical properties of the minimum mean squared error (MMSE), element-wise MMSE, and least-square channel estimates for this model. Using these estimates for maximum ratio combining and precoding, rigorous closed-form uplink (UL) and downlink (DL) achievable spectral efficiency (SE) expressions are derived and analyzed. The asymptotic SE behavior, when using the different channel estimators, are also analyzed. The numerical results show that the SE is higher when using the MMSE estimator than that of the other estimators, and the performance gap increases with the number of antennas.

Journal ArticleDOI
TL;DR: In this article, the authors suggest appropriate signal processing schemes and use cases to efficiently exploit mMIMO in both frequency bands, namely 30-300 GHz and millimeter wave (mmWave).
Abstract: The use of base stations (BSs) and access points (APs) with a large number of antennas, called Massive MIMO (multiple-input multiple-output), is a key technology for increasing the capacity of 5G networks and beyond. While originally conceived for conventional sub-6 GHz frequencies, Massive MIMO (mMIMO) is also ideal for frequency bands in the range 30-300 GHz, known as millimeter wave (mmWave). Despite conceptual similarities, the way in which mMIMO can be exploited in these bands is radically different, due to their specific propagation behaviors and hardware characteristics. This article reviews these differences and their implications, while dispelling common misunderstandings. Building on this foundation, we suggest appropriate signal processing schemes and use cases to efficiently exploit mMIMO in both frequency bands.

Journal ArticleDOI
TL;DR: In this paper, the authors designed MIMO-AirComp equalization and channel feedback techniques for spatially multiplexing multifunction computation, and derived a close-to-optimal equalizer in closed-form using differential geometry.
Abstract: In future Internet-of-Things networks, sensors or even access points can be mounted on ground/aerial vehicles for smart-city surveillance or environment monitoring. For such high-mobility sensing , it is impractical to collect data from a large population of sensors using any traditional orthogonal multi-access scheme due to the excessive latency. To tackle the challenge, a technique called over-the-air computation (AirComp) was recently developed to enable a data-fusion center to receive a desired function of sensing data from concurrent sensor transmissions, by exploiting the superposition property of a multi-access channel. This paper aims at further developing multiple-input-multiple output (MIMO) AirComp for enabling high-mobility multimodal sensing . Specifically, we design MIMO-AirComp equalization and channel feedback techniques for spatially multiplexing multifunction computation. Given the objective of minimizing the computation error, a close-to-optimal equalizer is derived in closed-form using differential geometry. The solution can be computed as the weighted centroid of points on a Grassmann manifold, where each point represents the subspace spanned by the channel matrix of a sensor. As a by-product, the problem of MIMO-AirComp equalization is proved to have the same form as the classic problem of multicast beamforming, establishing the AirComp-multicasting duality . Its significance lies in making the said Grassmannian-centroid solution transferable to the latter problem which otherwise is solved using the computation-intensive semidefinite relaxation method. Last, building on the AirComp architecture, an efficient channel-feedback technique is designed for direct acquisition of the equalizer at the access point from simultaneous feedback by all sensors. This overcomes the difficulty of provisioning orthogonal feedback channels for many sensors.

Posted Content
TL;DR: In this article, the authors considered the problem of channel estimation for large intelligent metasurface (LIM) assisted massive MIMO systems and proposed a two-stage algorithm that includes a sparse matrix factorization stage and a matrix completion stage.
Abstract: In this letter, we consider the problem of channel estimation for large intelligent metasurface (LIM) assisted massive multiple-input multiple-output (MIMO) systems. The main challenge of this problem is that the LIM integrated with a large number of low-cost metamaterial antennas can only passively reflect the incident signal by a certain phase shift, and does not have any signal processing capability. To deal with this, we introduce a general framework for the estimation of the transmitter-LIM and LIM-receiver cascaded channel, and propose a two-stage algorithm that includes a sparse matrix factorization stage and a matrix completion stage. Simulation results illustrate that the proposed method can achieve accurate channel estimation for LIM-assisted massive MIMO systems.