scispace - formally typeset
Search or ask a question

Showing papers on "Mineral absorption published in 2016"


Journal ArticleDOI
TL;DR: The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption.

67 citations


Journal ArticleDOI
TL;DR: In this paper, a novel prebiotic galacto-oligosaccharides (GOS) mixture, produced through transgalactosylation, with significant amount of mono and disaccharide may enhance mineral absorption in Sprague-Dawley rats.

19 citations


Journal ArticleDOI
TL;DR: The decrease in mineral absorption inhibitors especially IP6 during popping and fermentation could contribute to enhance mineral bioavailability and all IP6-to-mineral molar ratios were above the recommended values.
Abstract: This study evaluated the effect of popping and fermentation on the chemical composition of three types of Amaranthus caudatus grains cultivated in Ethiopia. Proximate composition, minerals and mineral absorption inhibitors were analyzed. Popping caused a decrease in protein content by 4 % and an increase in fat, ash, acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents by 12, 10, 15 and 67 %, respectively. While fermentation increased protein, fat and ash content by 3, 22 and 14 %, respectively but did not significantly change ADF and NDF content. Fe, Ca and phytic acid (IP6) decreased during popping but Mg, Zn, galloyl and catechol did not change significantly. On the other hand, fermentation increased Fe and Mg content but decreased IP6, galloyl and catechol content. The decrease in mineral absorption inhibitors especially IP6 during popping and fermentation could contribute to enhance mineral bioavailability. However, due to the presence of high phytate content in raw amaranth, all IP6-to-mineral molar ratios were above the recommended values.

18 citations


Journal ArticleDOI
TL;DR: Consuming the prebiotic-containing diet resulted in an extra amount of minerals that improved bone development in growing rats recovering from protein malnutrition, which increased Ca, P and Mg absorption.
Abstract: During growth, protein deprivation impairs epiphyseal growth plate (EGP) height, bone volume (BV) and endochondral ossification. During catch-up growth, Ca availability becomes essential to ensure the extra amount needed to achieve optimal peak bone mass and strength. GOS and FOS improve mineral absorption in the colon. The effect of a mixture of GOS/FOS® 9:1 added to a 0.5 %Ca (NCa) and a 0.3 %Ca (LCa) diets on Ca, P and Mg absorptions and bone mineralization, density and structure using an experimental model of growing rats recovering from early protein malnutrition was investigated. To induce protein malnutrition, rats were fed a low protein diet: 4 % (LPD) during 1 week and then were randomly assigned to recovery groups (R) until day 50 (T = 50) as follows: R0.5 %: NCa; RP0.5 %: NCa + 5.3 % GOS/FOS®; R0.3 %: LCa and RP0.3 %: LCa + 5.3 % GOS/FOS®. Control groups received the 0.5 %Ca or 0.3 %Ca diet from weaning until day 40 or 50. Body weight and length increased in C groups throughout the study; both were arrested in all R during LPD consumption and increased immediately after re-feeding. Independently of dietary Ca content, LS counts, β-glucosidase and Ca, P and Mg absorption increased, whereas cecum pH, β-glucuronidase, urease and tryptophanase decreased in RP0.5 %: and RP0.3 %: as compared to the other studied groups (p < 0.01). Prebiotic consumption decreased CTX levels and increased femur Ca, Mg and P contents, total skeleton bone mineral content, proximal tibia and spine BMD, BV, EGP height and hypertrophic zone thickness, stiffness and elastic modulus as compared to recovery groups fed the prebiotic-free diets. Under the present experimental conditions, GOS/FOS® mixture induced colonic positive effects, which increased Ca, P and Mg absorption. Thus, consuming the prebiotic-containing diet resulted in an extra amount of minerals that improved bone development in growing rats recovering from protein malnutrition.

16 citations


Journal ArticleDOI
TL;DR: The hypothesis that the negative effect of GL MRP consumption on iron functionality takes place regardless of the animals' stage of life is corroborated, since the haemoglobin concentration declined.
Abstract: The behaviour of dietary Maillard reaction compounds (MRP) as metal chelating polymers can alter mineral absorption and/or retention. Our aim in this study was to analyse the long-term effects of the consumption of model MRP from glucose-lysine heated for 90 min at 150 °C (GL) on iron, copper and zinc whole-body retention and tissue delivery. For 88 days, weaning rats were fed a Control diet or one containing 3% GL, until reaching the adult stage. During the experimental period a mineral balance was conducted to investigate the mineral retention. At day 88, the animals were sacrificed, blood was drawn for haemoglobin determination and some organs were removed. Copper and zinc balances were unaffected (Cu: 450 vs. 375 μg; Zn: 6.7 vs. 6.2 mg for Control and GL groups, respectively) and no change was observed in whole-body delivery. Iron retention, too, was unaltered (11.2 mg for Control and GL groups) but due to the tendency toward decreased body weight in the GL group (248 vs. 233 g for the Control and GL groups), whole-body iron concentration was 13% higher in the GL group than in the Control group. Absorbed iron accumulated particularly in the liver (144 vs. 190 μg g(-1) for the Control and GL groups), thus reducing haemoglobin levels. The long-term intake of MRP induced iron accumulation in the body but this did not result in enhanced iron functionality, since the haemoglobin concentration declined. Taking into account the findings of our research group's studies of young and adult rats, we now corroborate the hypothesis that the negative effect of GL MRP consumption on iron functionality takes place regardless of the animals' stage of life.

8 citations


Journal ArticleDOI
TL;DR: DietaryMannitol increased the absorption of Ca and Mg and the caecum markedly contributed to this promoting effect of mannitol.
Abstract: The effect of mannitol on bone-related mineral absorption and retention and the mechanism was investigated in this study. Fourteen 8-week-old male Wistar rats in experiment 1 and same number and age cecectomized Wistar male rats in experiment 2 were divided into two subgroups of seven animals, respectively, fed diets containing 0 or 4% mannitol for 28 days. Mineral balance tests were determined twice during days 8-12 and days 22-26, and the rats were slaughtered on day 28 both in experiment 1 and experiment 2. The whole caecum and colon were collected with the content to analyse tissue weight, content weight, content's pH and moisture, organic acids' concentration and mineral levels. In experiment 1, Ca absorption and retention and Mg absorption were significantly increased by mannitol feeding during days 8-12. Caecal total weight, tissue weight and content weight were increased, the pH of caecum and colon was reduced, and the concentrations of caecal short-chain fatty acids (SCFAs) were modified by mannitol feeding. In experiment 2, during days 8-12 and days 22-26, Ca absorption and retention were significantly lowered by mannitol feeding in cecectomized rats; however, mannitol feeding decreased Mg absorption during days 8-12, but did not impact Mg retention. Colonic total weight, tissue weight and content weight were significantly increased, and colonic pH was reduced by mannitol feeding. In conclusion, dietary mannitol increased the absorption of Ca and Mg and the caecum markedly contributed to this promoting effect of mannitol.