scispace - formally typeset
Topic

Minimum bounding box

About: Minimum bounding box is a(n) research topic. Over the lifetime, 5561 publication(s) have been published within this topic receiving 138240 citation(s). The topic is also known as: MBB.

...read more

Papers
More filters

Book ChapterDOI
Wei Liu1, Dragomir Anguelov, Dumitru Erhan2, Christian Szegedy2  +3 moreInstitutions (3)
08 Oct 2016-
TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.

...read more

Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

...read more

11,792 citations


Proceedings ArticleDOI
20 Mar 2017-
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation, which extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.

...read more

Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

...read more

9,492 citations


Proceedings Article
20 Mar 2017-
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.

...read more

Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: this https URL

...read more

5,595 citations


Book ChapterDOI
C. Lawrence Zitnick1, Piotr Dollár1Institutions (1)
06 Sep 2014-
TL;DR: A novel method for generating object bounding box proposals using edges is proposed, showing results that are significantly more accurate than the current state-of-the-art while being faster to compute.

...read more

Abstract: The use of object proposals is an effective recent approach for increasing the computational efficiency of object detection. We propose a novel method for generating object bounding box proposals using edges. Edges provide a sparse yet informative representation of an image. Our main observation is that the number of contours that are wholly contained in a bounding box is indicative of the likelihood of the box containing an object. We propose a simple box objectness score that measures the number of edges that exist in the box minus those that are members of contours that overlap the box’s boundary. Using efficient data structures, millions of candidate boxes can be evaluated in a fraction of a second, returning a ranked set of a few thousand top-scoring proposals. Using standard metrics, we show results that are significantly more accurate than the current state-of-the-art while being faster to compute. In particular, given just 1000 proposals we achieve over 96% object recall at overlap threshold of 0.5 and over 75% recall at the more challenging overlap of 0.7. Our approach runs in 0.25 seconds and we additionally demonstrate a near real-time variant with only minor loss in accuracy.

...read more

2,590 citations


Journal ArticleDOI
Yasutaka Furukawa1, Jean Ponce2Institutions (2)
TL;DR: A novel algorithm for multiview stereopsis that outputs a dense set of small rectangular patches covering the surfaces visible in the images, which outperforms all others submitted so far for four out of the six data sets.

...read more

Abstract: This paper proposes a novel algorithm for multiview stereopsis that outputs a dense set of small rectangular patches covering the surfaces visible in the images. Stereopsis is implemented as a match, expand, and filter procedure, starting from a sparse set of matched keypoints, and repeatedly expanding these before using visibility constraints to filter away false matches. The keys to the performance of the proposed algorithm are effective techniques for enforcing local photometric consistency and global visibility constraints. Simple but effective methods are also proposed to turn the resulting patch model into a mesh which can be further refined by an algorithm that enforces both photometric consistency and regularization constraints. The proposed approach automatically detects and discards outliers and obstacles and does not require any initialization in the form of a visual hull, a bounding box, or valid depth ranges. We have tested our algorithm on various data sets including objects with fine surface details, deep concavities, and thin structures, outdoor scenes observed from a restricted set of viewpoints, and "crowded" scenes where moving obstacles appear in front of a static structure of interest. A quantitative evaluation on the Middlebury benchmark [1] shows that the proposed method outperforms all others submitted so far for four out of the six data sets.

...read more

2,515 citations


Network Information
Related Topics (5)
Object detection

46.1K papers, 1.3M citations

91% related
Convolutional neural network

74.7K papers, 2M citations

91% related
Feature extraction

111.8K papers, 2.1M citations

91% related
Image segmentation

79.6K papers, 1.8M citations

90% related
Optical flow

13.1K papers, 371.5K citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202215
2021681
2020878
2019789
2018516
2017363

Top Attributes

Show by:

Topic's top 5 most impactful authors

Huchuan Lu

13 papers, 229 citations

Xue Yang

10 papers, 194 citations

Trevor Darrell

10 papers, 1K citations

Alexander G. Schwing

7 papers, 249 citations

Xiaogang Wang

7 papers, 317 citations