scispace - formally typeset
Search or ask a question
Topic

Minimum tillage

About: Minimum tillage is a research topic. Over the lifetime, 3964 publications have been published within this topic receiving 99413 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on lessons learned from long-term continuous cropping experiments, focusing on the importance of maintaining and improving soil quality in a continuous crop system, which is critical to sustaining agricultural productivity and environmental quality for future generations.
Abstract: Maintenance and improvement of soil quality in continuous cropping systems is critical to sustaining agricultural productivity and environmental quality for future generations. This review focuses on lessons learned from long-term continuous cropping experiments. Soil organic carbon (SOC) is the most often reported attribute from long-term studies and is chosen as the most important indicator of soil quality and agronomic sustainability because of its impact on other physical, chemical and biological indicators of soil quality. Long-term studies have consistently shown the benefit of manures, adequate fertilization, and crop rotation on maintaining agronomic productivity by increasing C inputs into the soil. However, even with crop rotation and manure additions, continuous cropping results in a decline in SOC, although the rate and magnitude of the decline is affected by cropping and tillage system, climate and soil. In the oldest of these studies, the influence of tillage on SOC and dependent soil quality indicators can only be inferred from rotation treatments which included ley rotations (with their reduced frequency of tillage). The impact of tillage per se on SOC and soil quality has only been tested in the ‘long-term’ for about 30 yrs, since the advent of conservation tillage techniques, and only in developed countries in temperate regions. Long-term conservation tillage studies have shown that, within climatic limits: Conservation tillage can sustain or actually increase SOC when coupled with intensive cropping systems; and the need for sound rotation practices in order to maintain agronomic productivity and economic sustainability is more critical in conservation tillage systems than conventional tillage systems. Long-term tillage studies are in their infancy. Preserving and improving these valuable resources is critical to our development of soil management practices for sustaining soil quality in continuous cropping systems.

1,211 citations

Journal ArticleDOI
TL;DR: Evidence that it promotes C sequestration is not compelling, because in essentially all cases where conservation tillage was found to sequester C, soils were only sampled to a depth of 30 cm or less, even though crop roots often extend much deeper.

1,178 citations

Journal ArticleDOI
TL;DR: Under conservation tillage, a richer soil biota develops that can improve nutrient recycling and this may also help combat crop pests and diseases, and the greater availability of crop residues and weed seeds improves food supplies for insects, birds and small mammals.

965 citations

Journal ArticleDOI
TL;DR: In this article, the impact of management practices on the soil environment was evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations.
Abstract: To evaluate the impact of management practices on the soil environment, it is necessary to quantify the modifications to the soil structure. Soil structure conditions were evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations. Saturated hydraulic conductivity and aggregate stability were also analysed. In soils tilled by alternative tillage systems, like ripper subsoiling, the macroporosity was generally higher and homogeneously distributed through the profile while the conventional tillage systems, like the mouldboard ploughing, showed a significant reduction of porosity both in the surface layer (0–100 mm) and at the lower cultivation depth (400–500 mm). The higher macroporosity in soils under alternative tillage systems was due to a larger number of elongated transmission pores. Also, the microporosity within the aggregates, measured by mercury intrusion porosimetry, increased in the soil tilled by ripper subsoiling and disc harrow (minimum tillage). The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the higher hydraulic conductivity in the soil tilled by ripper subsoiling. Aggregates were less stable in ploughed soils and this resulted in a more pronounced tendency to form surface crust compared with soils under minimum tillage and ripper subsoiling. The application of compost and manure improved the soil porosity and the soil aggregation. A better aggregation indicated that the addition of organic materials plays an important role in preventing soil crust formation. These results confirm that it is possible to adopt alternative tillage systems to prevent soil physical degradation and that the application of organic materials is essential to improve the soil structure quality.

691 citations

Journal ArticleDOI
TL;DR: Conservation agriculture (CA), defined as minimal soil disturbance (no-till) and permanent soil cover (mulch) combined with rotations, is a more sustainable cultivation system for the future than those presently practised as discussed by the authors.
Abstract: Conservation agriculture (CA), defined as minimal soil disturbance (no-till) and permanent soil cover (mulch) combined with rotations, is a more sustainable cultivation system for the future than those presently practised. The present paper first introduces the reasons for tillage in agriculture and discusses how this age-old agricultural practice is responsible for the degradation of natural resources and soils. The paper goes on to introduce conservation tillage (CT), a minimum tillage and surface mulch practice that was developed in response to the severe wind erosion caused by mouldboard tillage of grasslands and referred to as the American dust bowl of the 1930s. CT is then compared with CA, a suggested improvement on CT, where no-till, mulch, and rotations significantly improve soil properties (physical, biological, and chemical) and other biotic factors, enabling more efficient use of natural resources. CA can improve agriculture through improvement in water infiltration and reducing erosion, improving soil surface aggregates, reducing compaction through promotion of biological tillage, increasing surface soil organic matter and carbon content, moderating soil temperatures, and suppressing weeds. CA also helps reduce costs of production, saves time, increases yield through more timely planting, reduces diseases and pests through stimulation of biological diversity, and reduces greenhouse gas emissions. Availability of suitable equipment is a major constraint to successful CA, but advances in design and manufacture of seed drills by local manufacturers are enabling farmers to experiment and accept this technology in many parts of the world. Estimates of farmer adoption of CA are close to 100 million ha in 2005, indicating that farmers are convinced of the benefits of this technology. The paper concludes that agriculture in the next decade will have to produce more food, sustainably, from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. This will be a significant challenge for agricultural scientists, extension personnel, and farmers. Promoting and adopting CA management systems can help meet this complex goal.

609 citations


Network Information
Related Topics (5)
Soil fertility
33.7K papers, 859.4K citations
88% related
Soil organic matter
39.8K papers, 1.5M citations
86% related
Soil water
97.8K papers, 2.9M citations
85% related
Soil carbon
27.3K papers, 957.4K citations
84% related
Agriculture
80.8K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202226
202184
202093
201982
201896