scispace - formally typeset
Search or ask a question
Topic

Miscibility

About: Miscibility is a research topic. Over the lifetime, 5521 publications have been published within this topic receiving 133547 citations. The topic is also known as: miscible.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the areas under the linear loss modulus versus temperature curves (loss area, LA) and tan δ versus temperature curve (TA) were evaluated for a number of acrylic, methacrylic, styrenic and butadiene based copolymers and interpenetrating polymer networks.
Abstract: The areas under the linear loss modulus versus temperature curves (loss area, LA) and tan δ versus temperature curves (TA) were evaluated for a number of acrylic, methacrylic, styrenic and butadiene based copolymers and interpenetrating polymer networks, IPNs, as a function of crosslink density and comliosition, and were compared with values predicted by group contribution analysis. The LAs of the sequential IPNs, cross-poly(n-butyl methacrylate)-inter-crosspolystyrene, were found to exhibit up to 30% larger LAs than the poly(n-butyl metacrylate-stat-styrene) copolymers, which had LAs slightly less than the values predicted from the group contribution analysis. At constant chemical composition (50% n-butyl methacrylate, 50% styrene), LA equals 14.4 GPa K for the IPN, attributed to a synergistic effect resulting from the IPN's microheterogeneous morphology, as compared with 10.7 GPa K for the single phase, miscible copolymer. Increases in the LA with increased concentration of polymer, network II were also observed for cross-poly(ethyl acrylate)-inter-crosspolystyrene and cross-polybutadiene-inter-cross-polystyrene IPNs. On the other hand, cross-polybutadiene-inter-cross-poly(methyl methacrylate) IPNs had LAs much lower than were predicted by the group contribution analysis, which were attributed to lower miscibility in this system relative to the other systems evaluated. In general, decreased crosslink densities and lower concentrations of network II increased TA. These findings demonstrate how the morphology of a multiphase polymeric material can affect LA and TA, with significant increases In damping capability over the average of the component polymer values.

83 citations

Journal ArticleDOI
TL;DR: The results of experiments designed to provide quantitative thermodynamic information on the miscibility, interdiffusion, and depth profile of P3HT are described, finding that the resultant thin films consist of a 'bulk' layer that is not influenced by the air or substrate surface.
Abstract: Recent work has shown that poly(3-hexylthiophene) (P3HT) and the surface-functionalized fullerene 1-(3-methyloxycarbonyl)propyl(1-phenyl[6,6])C61 (PCBM) are much more miscible than originally thought, and the evidence of this miscibility requires a return to understanding the optimal morphology and structure of organic photovoltaic active layers. This manuscript describes the results of experiments that were designed to provide quantitative thermodynamic information on the miscibility, interdiffusion, and depth profile of P3HT : PCBM thin films that are formed by thermally annealing initial bilayers. It is found that the resultant thin films consist of a ‘bulk’ layer that is not influenced by the air or substrate surface. The composition of PCBM in this ‘bulk’ layer increases with increased PCBM loading in the original bilayer until the ‘bulk’ layer contains 22 vol% PCBM. The introduction of additional PCBM into the sample does not increase the amount of PCBM dispersed in this ‘bulk’ layer. This observation is interpreted to indicate that the miscibility limit of PCBM in P3HT is 22 vol%, while the precise characterization of the depth profiles in these films shows that the PCBM selectively segregates to the silicon and near air surface. The selective segregation of the PCBM near the air surface is ascribed to an entropic driving force.

83 citations

Journal ArticleDOI
TL;DR: In this paper, the authors dealt with the mechanical properties, water-vapor transmission behavior at different relative humidity conditions, and DSC thermograms of edible films formulated using various proteins (casein, gelatin, albumin) in combination with starch and nonthermal as well as intense thermal blending.
Abstract: The present investigation dealt with the mechanical properties, water-vapor transmission behavior at different relative humidity conditions, and DSC thermograms of edible films formulated using various proteins (casein, gelatin, albumin) in combination with starch and nonthermal as well as intense thermal blending. Nonthermal blended film showed in the DSC thermogram a double Tg, indicating poor miscibility of the components and, hence, a poor film-forming property. However, the DSC thermogram of all the films based on intense thermal blending showed a single Tg, indicating the complete molecular miscibility of the components. Casein-based film showed a lower water-vapor transmission rate, water gain at different relative humidity conditions, and higher tensile strength compared to its counterparts containing gelatin and albumin. Since the casein–starch blend gave better film properties, a blend of hydrophobic carnauba wax and casein was prepared to compare the properties of hydrophilic–hydrophilic and hydrophobic–hydrophilic blends. Both these blends compared well with respect to the water-vapor transmission rate. Wax-based film showed multiphased behavior in the DSC thermograms and the percent elongation was lower as compared to the casein–starch blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 64–71, 2003

83 citations

Journal ArticleDOI
TL;DR: The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends with and without the addition of graft copolymer (NR-g-PMMA) have been investigated in this article.
Abstract: The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR-g-PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass-transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000

83 citations

Journal ArticleDOI
Bingcheng Luo1, Xiaohui Wang1, Hongxian Wang1, Ziming Cai1, Longtu Li1 
TL;DR: In this paper, P(VDF-HFPHFP)/PMMA composite films were fabricated using a blending and hot-molding method and investigated using both experimental and theoretical methods.

82 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
93% related
Polymerization
147.9K papers, 2.7M citations
91% related
Phase (matter)
115.6K papers, 2.1M citations
90% related
Nanocomposite
71.3K papers, 1.9M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023215
2022427
2021114
2020130
2019114
2018114