scispace - formally typeset
Search or ask a question
Topic

Mitochondrial permeability transition pore

About: Mitochondrial permeability transition pore is a research topic. Over the lifetime, 5617 publications have been published within this topic receiving 391053 citations.


Papers
More filters
Journal ArticleDOI
04 Feb 1999-Nature
TL;DR: The identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei is reported, indicating that AIF is a mitochondrial effector of apoptotic cell death.
Abstract: Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.

4,095 citations

Journal ArticleDOI
TL;DR: The mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, and all of the known ROS-producing sites and their relevance to the mitochondrial ROS production in vivo are discussed.
Abstract: Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.

2,893 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the mitochondrial rates of production and steady state levels of reactive oxygen species generated by mitochondria, or from other sites within or outside the cell, cause damage to mitochondrial components and initiate degradative processes.

2,787 citations

Journal ArticleDOI
TL;DR: Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.
Abstract: This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.

2,414 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
88% related
Apoptosis
115.4K papers, 4.8M citations
87% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Phosphorylation
69.3K papers, 3.8M citations
87% related
Receptor
159.3K papers, 8.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023115
2022210
2021220
2020235
2019189
2018206