Topic

# Mixture model

About: Mixture model is a(n) research topic. Over the lifetime, 18155 publication(s) have been published within this topic receiving 588317 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

47,199 citations

•

Microsoft

^{1}TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

22,762 citations

••

TL;DR: The focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normal- ity after transformations and marginalization, and the results are derived as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations.

Abstract: The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers primarily interested in the science underlying the data and models they are analyzing, rather than for researchers interested in the probability theory underlying the iterative simulations themselves. Our recommended strategy is to use several independent sequences, with starting points sampled from an overdispersed distribution. At each step of the iterative simulation, we obtain, for each univariate estimand of interest, a distributional estimate and an estimate of how much sharper the distributional estimate might become if the simulations were continued indefinitely. Because our focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normality after transformations and marginalization, we derive our results as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations. The methods are illustrated on a random-effects mixture model applied to experimental measurements of reaction times of normal and schizophrenic patients.

12,022 citations

Microsoft

^{1}Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

••

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.

Abstract: Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models (GMMs) to determine how well each state of each HMM fits a frame or a short window of frames of coefficients that represents the acoustic input. An alternative way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition benchmarks, sometimes by a large margin. This article provides an overview of this progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.

7,700 citations