scispace - formally typeset
Search or ask a question
Topic

Mixture theory

About: Mixture theory is a research topic. Over the lifetime, 616 publications have been published within this topic receiving 19350 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation that shows superior performance in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.
Abstract: Gaussian mixture models (GMMs) constitute a well-known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation-maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.

219 citations

Journal ArticleDOI
TL;DR: This modelling approach builds on previous work by introducing a modified factor analysis covariance structure, leading to a family of 12 mixture models, including parsimonious models, which gives very good performance, relative to existing popular clustering techniques, when applied to real gene expression microarray data.
Abstract: Motivation: In recent years, work has been carried out on clustering gene expression microarray data. Some approaches are developed from an algorithmic viewpoint whereas others are developed via the application of mixture models. In this article, a family of eight mixture models which utilizes the factor analysis covariance structure is extended to 12 models and applied to gene expression microarray data. This modelling approach builds on previous work by introducing a modified factor analysis covariance structure, leading to a family of 12 mixture models, including parsimonious models. This family of models allows for the modelling of the correlation between gene expression levels even when the number of samples is small. Parameter estimation is carried out using a variant of the expectation–maximization algorithm and model selection is achieved using the Bayesian information criterion. This expanded family of Gaussian mixture models, known as the expanded parsimonious Gaussian mixture model (EPGMM) family, is then applied to two well-known gene expression data sets. Results: The performance of the EPGMM family of models is quantified using the adjusted Rand index. This family of models gives very good performance, relative to existing popular clustering techniques, when applied to real gene expression microarray data. Availability: The reduced, preprocessed data that were analysed are available at www.paulmcnicholas.info Contact: pmcnicho@uoguelph.ca

211 citations

Journal ArticleDOI
TL;DR: A thermodynamically consistent four-species model of tumor growth on the basis of the continuum theory of mixtures, unique to this model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation.
Abstract: In this paper, we develop a thermodynamically consistent four-species model of tumor growth on the basis of the continuum theory of mixtures. Unique to this model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models. A mixed finite element spatial discretization is developed and implemented to provide numerical results demonstrating the range of solutions this model can produce. A time-stepping algorithm is then presented for this system, which is shown to be first order accurate and energy gradient stable. The results of an array of numerical experiments are presented, which demonstrate a wide range of solutions produced by various choices of model parameters.

211 citations

Journal ArticleDOI
TL;DR: An unsupervised algorithm for learning a finite mixture model from multivariate data based on the Dirichlet distribution, which offers high flexibility for modeling data.
Abstract: This paper presents an unsupervised algorithm for learning a finite mixture model from multivariate data. This mixture model is based on the Dirichlet distribution, which offers high flexibility for modeling data. The proposed approach for estimating the parameters of a Dirichlet mixture is based on the maximum likelihood (ML) and Fisher scoring methods. Experimental results are presented for the following applications: estimation of artificial histograms, summarization of image databases for efficient retrieval, and human skin color modeling and its application to skin detection in multimedia databases.

196 citations

Journal ArticleDOI
TL;DR: A Bayesian method for mixture model training that simultaneously treats the feature selection and the model selection problem and can simultaneously optimize over the number of components, the saliency of the features, and the parameters of the mixture model is presented.
Abstract: We present a Bayesian method for mixture model training that simultaneously treats the feature selection and the model selection problem. The method is based on the integration of a mixture model formulation that takes into account the saliency of the features and a Bayesian approach to mixture learning that can be used to estimate the number of mixture components. The proposed learning algorithm follows the variational framework and can simultaneously optimize over the number of components, the saliency of the features, and the parameters of the mixture model. Experimental results using high-dimensional artificial and real data illustrate the effectiveness of the method.

194 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
77% related
Boundary value problem
145.3K papers, 2.7M citations
75% related
Reynolds number
68.4K papers, 1.6M citations
74% related
Partial differential equation
70.8K papers, 1.6M citations
74% related
Nonlinear system
208.1K papers, 4M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
20228
20219
20208
201913
201811