scispace - formally typeset
Search or ask a question
Topic

Mobile robot navigation

About: Mobile robot navigation is a research topic. Over the lifetime, 14713 publications have been published within this topic receiving 263092 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel design paradigm as well as the related detailed mechanical design embodiment of a mechanically hybrid mobile robot that consists of a mobile robot platform for locomotion and a manipulator arm for manipulation is presented.
Abstract: This paper presents a novel design paradigm as well as the related detailed mechanical design embodiment of a mechanically hybrid mobile robot. The robot is composed of a combination of parallel and serially connected links resulting in a hybrid mechanism that consists of a mobile robot platform for locomotion and a manipulator arm for manipulation. Unlike most other mobile robot designs that have a separate manipulator arm module attached on top of the mobile platform, this design has the ability to simultaneously and interchangeably provide locomotion and manipulation capability. This robot enhanced functionality is complemented by an interchangeable track tension and suspension mechanism that is embedded in some of the mobile robot links to form the locomotion subsystem of the robot. The mechanical design was analyzed with a virtual prototype that was developed with MSC ADAMS software. The simulation was used to study the robot's enhanced mobility characteristics through animations of different possible tasks that require various locomotion and manipulation capabilities. The design was optimized by defining suitable and optimal operating parameters including weight optimization and proper component selection. Moreover, the simulation enabled us to define motor torque requirements and maximize end-effector payload capacity for different robot configurations. Visualization of the mobile robot on different types of virtual terrains such as flat roads, obstacles, stairs, ditches, and ramps has helped in determining the mobile robot's performance, and final generation of specifications for manufacturing a full scale prototype.

60 citations

Proceedings ArticleDOI
05 May 2012
TL;DR: A large-scale in-situ study of tactile feedback for pedestrian navigation systems is reported and data collected through anonymous monitoring suggests that tactile feedback is successfully adopted in one third of all trips and has positive effects on the user's level of distraction.
Abstract: In this paper, we report about a large-scale in-situ study of tactile feedback for pedestrian navigation systems. Recent advances in smartphone technology have enabled a number of interaction techniques for smartphone that use tactile feedback to deliver navigation information. The aim is to enable eyes-free usage and avoid distracting the user from the environment. Field studies where participants had to fulfill given navigation tasks, have found these techniques to be efficient and beneficial in terms of distraction. But it is not yet clear whether these findings will replicate in in-situ usage. We, therefore, developed a Google Maps-like navigation application that incorporates interaction techniques proposed in previous work. The application was published for free on the Android Market and so people were able to use it as a navigation system in their everyday life. The data collected through anonymous monitoring suggests that tactile feedback is successfully adopted in one third of all trips and has positive effects on the user's level of distraction.

60 citations

Journal Article
TL;DR: A robot control system for known structured environments that integrates robust reactive control with reasoning-based execution monitoring and the value of intelligent execution monitoring is demonstrated by means of two realistic office delivery scenarios.
Abstract: We present a robot control system for known structured environments that integrates robust reactive control with reasoning-based execution monitoring. It provides a robot with a powerful method for dealing with situations that were caused by the interaction with humans or that are due to unexpected changes in the operating environment. On the reactive level, the robot is controlled using a hierarchy of low-level behaviours. On the high level, a logical representation of the world enables the robot to plan action sequences and to reason about the state of the world. If the execution of an action does not have the expected effect, high-level reasoning allows the robot to infer possible explanations and, if necessary, to recover from the failure situation. For the robot to act optimally, the discrepancies between the internal world model and the real world have to be detected and corrected. The proposed system obtains new information about the world by executing sensing actions (active perception) and by sensory interpretation during the robot's operation. It also takes into account temporal information about changes in the environment. All updates of the world model are performed in a way that the changes are consistent with an underlying action theory. Having implemented the proposed system on a common mobile robot platform, we demonstrate the value of intelligent execution monitoring by means of two realistic office delivery scenarios.

60 citations

Journal ArticleDOI
TL;DR: Simulation experiments show that the proposed neuro-fuzzy system can improve navigation performance in complex and unknown environments and is suitable for multisensor fusion and integration.

60 citations

Journal ArticleDOI
TL;DR: An integrated framework that aims to introduce a semantic mapping method and to use this semantic map, as a means to provide a hierarchical navigation solution, for mobile robots.

60 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
87% related
Control system
129K papers, 1.5M citations
86% related
Object detection
46.1K papers, 1.3M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Feature extraction
111.8K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022179
202194
2020125
2019146
2018129