scispace - formally typeset
Search or ask a question
Topic

Mobile robot navigation

About: Mobile robot navigation is a research topic. Over the lifetime, 14713 publications have been published within this topic receiving 263092 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new triangular pattern of arranging the RFID tags on the floor has been proposed to reduce the estimation error of the conventional square pattern, and the motion-continuity property of the differential-driving mobile robot has been utilized to improve the localization accuracy of the mobile robot.
Abstract: This paper presents an efficient localization scheme for an indoors mobile robot using Radio-Frequency IDentification (RFID) systems. The mobile robot carries an RFID reader at the bottom of the chassis, which reads the RFID tags on the floor to localize the mobile robot. Each of the RFID tags stores its own absolute position, which is used to calculate the position, orientation, and velocity of the mobile robot. However, a localization system based on RFID technology inevitably suffers from an estimation error. In this paper, a new triangular pattern of arranging the RFID tags on the floor has been proposed to reduce the estimation error of the conventional square pattern. In addition, the motion-continuity property of the differential-driving mobile robot has been utilized to improve the localization accuracy of the mobile robot. According to the conventional approach, two readers are necessary to identify the orientation of the mobile robot. Therefore, this new approach, based on the motion-continuity property of the differential-driving mobile robot, provides a cheap and fast estimation of the orientation. The proposed algorithms used to raise the accuracy of the robot localization are successfully verified through experiments.

258 citations

Journal ArticleDOI
TL;DR: It is concluded that a cooperation model is critical for safe and efficient robot navigation in dense human crowds and the salient characteristics of nearly any dynamic navigation algorithm.
Abstract: We consider the problem of navigating a mobile robot through dense human crowds. We begin by exploring a fundamental impediment to classical motion planning algorithms called the “freezing robot problem”: once the environment surpasses a certain level of dynamic complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place or performs unnecessary maneuvers to avoid collisions. We argue that this problem can be avoided if the robot anticipates human cooperation, and accordingly we develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a “multiple goal” extension that models the goal-driven nature of human decision making. We validate this model with an empirical study of robot navigation in dense human crowds 488 runs, specifically testing how cooperation models effect navigation performance. The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 0.8 humans/m2, while a state-of-the-art non-cooperative planner exhibits unsafe behavior more than three times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our non-cooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

258 citations

Journal ArticleDOI
TL;DR: This low-cost indoor navigation system runs on off-the-shelf camera phones and uses built-in cameras to determine user location in real time by detecting unobtrusive fiduciary markers, enabling quick deployment in new environments.
Abstract: This low-cost indoor navigation system runs on off-the-shelf camera phones. More than 2,000 users at four different large-scale events have already used it. The system uses built-in cameras to determine user location in real time by detecting unobtrusive fiduciary markers. The required infrastructure is limited to paper markers and static digital maps, and common devices are used, facilitating quick deployment in new environments. The authors have studied the application quantitatively in a controlled environment and qualitatively during deployment at four large international events. According to test users, marker-based navigation is easier to use than conventional mobile digital maps. Moreover, the users' location awareness in navigation tasks improved. Experiences drawn from questionnaires, usage log data, and user interviews further highlight the benefits of this approach.

258 citations

Journal ArticleDOI
01 Jan 1997
TL;DR: An arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms, and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks are provided.
Abstract: We review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms, and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks.

256 citations

Proceedings ArticleDOI
03 Jul 1990
TL;DR: Presents an algorithm for autonomous map building and maintenance for a mobile robot that associate a validation measure to represent the belief in the validity of a target, in addition to the usual covariance matrix to represent spatial uncertainty.
Abstract: Presents an algorithm for autonomous map building and maintenance for a mobile robot. With each geometric target in the map the authors associate a validation measure to represent the belief in the validity of a target, in addition to the usual covariance matrix to represent spatial uncertainty. At each position update cycle, predicted features are generated for each target in the map and compared to features actually observed. Successful matches to targets with high validation measure are used for localization. Unpredicted observations are used to initialize target tracks for new environment features, while unobserved predictions result in a target's validation measure being decreased. They describe experimental results obtained with the algorithm that demonstrate successful map-building using real sonar data. >

255 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
87% related
Control system
129K papers, 1.5M citations
86% related
Object detection
46.1K papers, 1.3M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Feature extraction
111.8K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022179
202194
2020125
2019146
2018129