scispace - formally typeset
Search or ask a question
Topic

Modal testing

About: Modal testing is a research topic. Over the lifetime, 4047 publications have been published within this topic receiving 64772 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the updated FE models can predict the vibration response of the idealised STC floors with reasonable accuracy.

23 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental modal analysis system which can effectively be used to obtain the modal parameters of small structures was described, and the system used an electromagnetic exciter to produce the excitation force, a piezoelectric transducer to measure this force, and a Laser Doppler Vibrometer to measure the response.
Abstract: This paper describes an experimental modal analysis system which can effectively be used to obtain the modal parameters of small structures. The system uses an electromagnetic exciter to produce the excitation force, a piezoelectric transducer to measure this force, and a Laser Doppler Vibrometer to measure the response. Several designs of the magnetic actuator are discussed and evaluated. The system is verified by obtaining the modal parameters ofa miniature cantilever plate, using two preferred exciter designs, and comparing the measured parameters with those acquired from a finite element model. Favorable agreement is obtained between the experimental and computational results. Finally, the two preferred exciters are compared and an optimal configuration is discussed.

23 citations

Proceedings ArticleDOI
01 Jan 1982
TL;DR: The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.
Abstract: In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.

23 citations

Journal ArticleDOI
TL;DR: In this paper, experimental and numerical modal analysis techniques are achieved to characterize the dynamic behaviour of a back-to-back planetary gear, and the modes are presented in the numerical studies in low-frequency and high-frequency bands.
Abstract: In order to characterize the dynamic behaviour of a back-to-back planetary gear, experimental and numerical modal analysis techniques are achieved. Rotational and translational modal deflections are highlighted. Natural frequencies are compared to the results from the lumped-parameter model. The modes are presented in the numerical studies in low-frequency and high-frequency bands. Distributions of modal kinetic and strain energies are studied.

23 citations

Journal ArticleDOI
TL;DR: Results of experiment show the controller can effectively attenuate elastic vibration of the structure and reduce the vibration of flexible structure with piezoelectric actuators and strain gage transducer in practical complex environment.
Abstract: This paper studies the application of the sliding mode control method to reduce the vibration of flexible structure with piezoelectric actuators and strain gage transducer in practical complex environment. The state- space dynamic model of the system was derived by using finite element method and experimental modal test. The structure is subjected to arbitrary, unmeasurable disturbance forces. Taking into account the uncertain random disturbance and measurement noise, Kalman filter is chosen as the state estimator to obtain the modal coordinates and modal velocities for the modal space control. A sliding mode controller is adopted due to its distinguished robustness property of insensitiveness to parameter uncertainties and external disturbances. The sliding surface is determined by using optimization method, and the sliding controller is designed by applying Lyapunov direct method. That is, along the switching surface, the cost function of the states is minimized. A real-time control system was built using dSPACE DS1103 platform, and vibration control tests were performed to experimentally verify the performances of the proposed controller. The results of experiment show the controller can effectively attenuate elastic vibration of the structure.

23 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
89% related
Finite element method
178.6K papers, 3M citations
83% related
Piston
176.1K papers, 825.4K citations
78% related
Rotor (electric)
179.9K papers, 1.2M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202367
2022164
202141
202059
201967
201878